SELECTION OF BIOMARKERS OF EXPOSURE FOR A POPULATION STUDY OF U.S. ADULT SMOKERS TO CIGARETTE SMOKE

R. D. Kinser¹, R. A. Carchman^{2,3}, D. E. Leyden⁴, E. B. Sanders⁵, R. Stabbert⁶, A. R. Tricker⁵, K. von Holt⁶, R.-A. Walk¹ ¹Philip Morris U.S.A., Richmond, VA, USA; ³Columbia, VA, USA; ³Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA; ⁴Hartfield, VA, USA; ⁵Philip Morris Products SA, Neuchatel, Switzerland; ⁶INBIFO Institut fuer biologische Forschung GmbH, Cologne, Germany

 Why Measure Cigarette Supervised in the supervised of the supervised of		<section-header><section-header><section-header><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header>		<u<section-header></u<section-header>		<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header>									
								BIOMARKER	Acetonit	rile	Carbon Monoxide	Nicotine and Metabolites	Hb Adducts of 3- and 4- Aminobiphenyl (3-ABP and 4-ABP)		NNK Metabolites
								Unique or nearly unique to tobacco smoke	44 - 140 ug/cigt in mainstream smoke (2)		Mainstream smoke levels of 1.8 -13.7 mg/ci (7); but confounders include vehicular exhau and home heating systems		MS yields of 3-Al ng/cigt and 4-AE ng/cigt (16)		Mainstream NNK yield ca. 84 ng/cigt
								Represents both gas/vapor and particulate phases of smoke	gas phase		gas phase	particulate phase	particulate phase		particulate phase
Represents health-relevant constituents			Diminished oxygen-transport capacity of hemoglobin		4-ABP classified carcinogenic to h (Group I)		NNK classified by IARC as possibly carcinogenic to humans (Group IIB)								
Biological half-life	24 h for acetonitrile _{ex} (3); 32 h for acetontitrile _{blood} (elimination) (4)		CO _{ex} : 2 - 3 h (8); COHb: ~3 h (awake) and ~6.9 h (sleeping)	nicotine: 11 h (13) (elimination) (9) cotinine: 19.5 h (13) (elimination) 3'-OH-cotinine: 6.4 h (25) (elimination) 3'-OH-cotinine-Gluc: 7.2 h (25) (elimination)	4-ABP: 7 - 9 weeks (18)		distribution half-life 3 - 4 days; elimination half-life 40 -45 days (22)								
Smoker/non-smoker ratios	~11:1 for acetonitrile _{ex} (3); not detected in blood of non-smokers (5)		CO _{ex} :~8:1 (10); COHb: ~5:1 (11)	nicotine: 136:1 (<i>15</i>) cotinine: 302:1 (<i>15</i>)	Hb adduct of 4-ABP = 3:1 - 5:1; Hb adduct of 3-ABP = 8:1 (77)		NNAL: between 100:1 and 1000:1 (21)								
Reliable analytical methods available	Proton transfer mass spectrometry of exhalate sample (6); GC/FID for blood determinations (4)		CO _{ex} : electrochemical gas sensor COHb: spectrophotometry	LC/MS (14)	GC/MS of derivatized amines		GC/TEA (Thermal Energy Analyzer) of derivatized TSNA (23)								
Sampling to acquire material for analysis only minimally invasive	Breath collection at clinical site for exhalate; venous blood draw		Breath collection at clinical site for CO _{ex} ; venous blood draw for COHb	24 h urine			24 h urine								
Constituent metabolism understood	Detected unchanged in ex	naiate and blood (4,	Exhaled unchanged; forms adduct with hemoglobin	Nicotine, cotinine, trans-3'-hydroxycotinine and their glucuronides in a 24- h urine reflect ~90% of the nicotine dose to smokers (15) $\downarrow \downarrow $	Id Form hemoglobir (19) 3-arrinobiphe 4-arrinobip	NH2 nyl	NNAL primary metabolite resulting from carbonyl reduction (24) $(f) = \int_{N}^{0} \int_{N_{CH_{5}}}^{N_{0}} \int_{N_{CH_{5}}}^{OGluc} \int_{N_{CH_{5}}}^{N_{0}} \int_{N_{1}}^{OGluc} \int_{N_{1}}^{N_{0}} \int_{N_{1}}^{N_{1}} \int_{N_{$								

INBIFO is a Philip Morris research laboratory.