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BACKGROUND

In epidemiology, quantification of potential cause-
effect relations is currently dominated by 
regression methods. To minimize the chance of 
false-positive causal conclusions, the identified 
statistical associations are usually assessed by the 
pragmatic application of predefined criteria of 
causality. For a variety of reasons it might be more 
preferable to have a clearer separation of inductive 
(speculative) and deductive (confirmatory) steps in 
etiologic research. The methodology of 
probabilistic causal models, which has been 
developed in the last two decades, allows for 
quantitative predictions based on a priori 
formulated causal models. 

APPROACH
The approach proposed in the present work is 
based on a top-down concept of scientific inquiry. 
It is assumed that at least one causal hypothesis in 
the form of a multifactor causal model is available 
to explain a set of empirical data. The (or each) 
pre-specified causal model is then confronted with 
the data in order to obtain an estimation of the 
likelihood of the model.

RESULTS
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Choice of prior has small effects after n>20.  The point estimate was set to 0.5.

METHODS
Configuration Sequence Analysis

The term configuration Sequence Analysis (CSA) is 
proposed to denote the present conceptually-driven causal 
modeling approach. In order to support the application, a 
SAS macro was developed. The core tasks of the CSA 
procedure are firstly to compute unconditional and 
conditional probabilities for each configuration of model 
variables of the specified causal network based on the 
available data. Secondly, the conditional point estimates of 
the outcome variable are computed according to the model 
structure and are compared with the observed relative 
frequencies of all configurations of model variables.

CONCLUSIONS
1.The correct causal model could be identified with the 

CSA procedure.

2.The priors have substantial influence on 95% highest 
probability density regions only when the sample size is 
below about n=20.

X5

X1

X3 X4

X2

X5

Model 2

X1

X3 X4

X2

X5

Model 1*

X2

X3 X4

X1

X5

Model 3

X3 X4

X5

Model 4

X1

X3 X4

Model 5

Data simulation

Given the pictured causal structure, a data set was 
generated using the SAS (version 9.1) RANUNI routine of 
a randomized process without memory, being 
unidirectional in time. Random numbers were routinely 
generated from a uniform distribution on the interval of 0 
to 1. The coherence of the simulated data with the preset 
parameters was validated. A simulated data set of 1000 
data points was used to asses the fitting of the data with 
five concurrent causal models. 

Computation of point estimates

In the context of Bayesian networks, the point estimate of 
the outcome variable (Pe) is defined by the hypothetical 
Bayesian network structure under investigation, 
according to the chain rule. For example, in the figure   
Pe=P(X1)ÿP(X2)ÿP(X3|X1)ÿP(X4|X1,X2)ÿP(X5|X3,X4)
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X2Smoker

P1 (X1=yes) = 0.25

Family history of cancer

P2 (X2=yes) = 0.20

X5

Bronchitis

P3 (X3=yes|X1=no) = 0.10
P3 (X3=yes|X1=yes) = 0.25

Lung cancer

P4 (X4=yes|X1=no, X2=no) = 0.05
P4 (X4=yes|X1=yes, X2=no) = 0.25
P4 (X4=yes|X1=no, X2=yes) = 0.20
P4 (X4=yes|X1=yes, X2=yes) = 0.40

Positive X-ray results

P5 (X5=yes|X3=no, X4=no) = 0.02
P5 (X5=yes|X3=yes, X4=no) = 0.20
P5 (X5=yes|X3=no, X4=yes) = 0.60
P5 (X5=yes|X3=yes, X4=yes) = 0.80

Model fit and model comparison

A χ2 goodness-of-fit statistic was used to evaluate the 
overall model fit. In addition, deviance, Akaike Information 
Criterion (AIC), and Bayesian Information Criterion (BIC) 
were employed in the present analysis to select the most 
likely model. Assuming that the variables in the data set 
have a binomial distribution, the likelihood of the model, 
deviance, AIC and BIC are defined as follows:

where d, referring to the dimension of the model, equals 
2N-1. N is the number of variables in the model. K= 2N is 
number of model variable configurations.

* Underlying data-generation

Computation of 95% highest probability 
density regions

Assuming that in the present analysis all the 
variables are dichotomous and have a 
binomial distribution function, denoted as X ~
B(n, p), and that the prior p has a beta 
distribution function, Beta(a, b). The posterior 
point estimate has then also a beta 
distribution, Beta(a+x, b+n-x), denoted as p’ ~
Beta (a’, b’), where a’=a+x and b’=b+n-x.
The precision of the point estimates Pe is 
estimated by computing the 95% highest 
probability density region of the posterior p’. 
According to Lee (2004), if p’ ~ Beta(a’, b’), 
then log(l) is very near that of the logF
distribution. Thus, a 95% highest probability 
density region for p’, when p’ ~ Beta(a’, b’), can 
be determined by finding the values 
corresponding to the 95% highest probability 
density lower and upper values of log (F2a’,2b’). 


