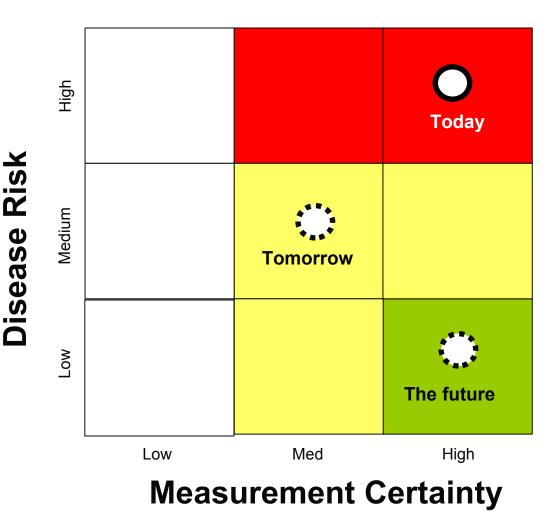
A Risk Assessment Approach for Chronic Obstructive Pulmonary Disease

presented at the Society of Risk Analysis, Europe Meeting, Den Hague, The Netherlands, June 2007



Hans-Jörg Urban, Rolf Weitkunat, Gerd Kallischnigg, Edward Sanders & Hugh Browne

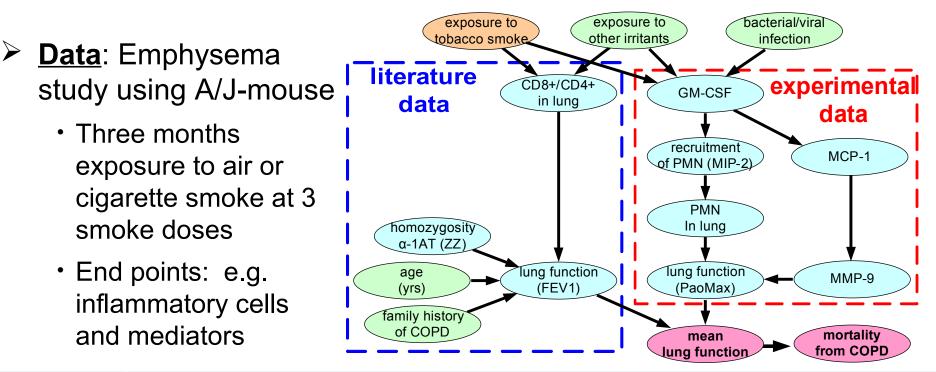
Philip Morris Product SA, PMI Research & Development, Product Risk Management Quai Jeanrenaud 56, 2000 Neuchâtel, Switzerland

Purpose & Outline

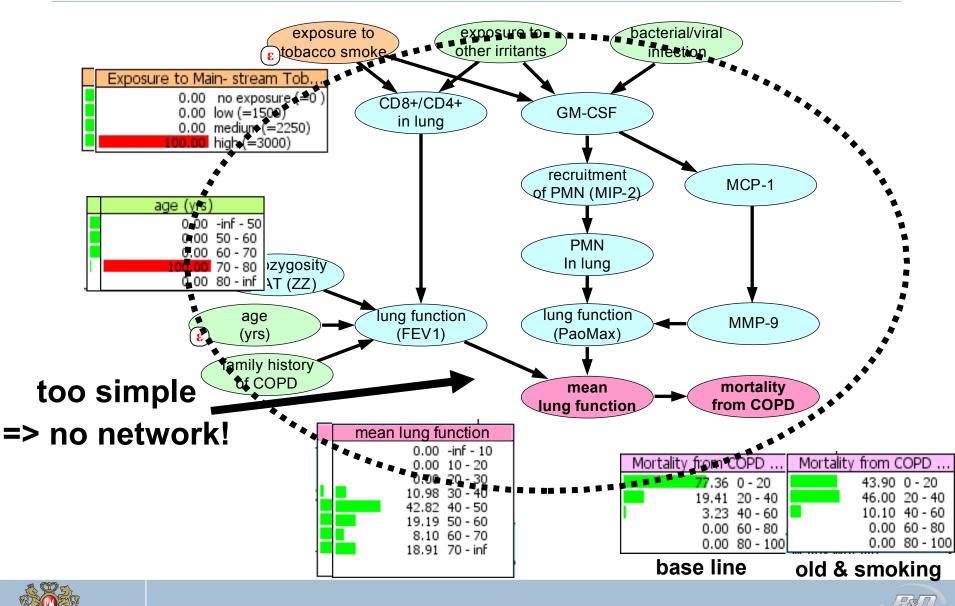
- 1. Present a Risk Assessment Approach for COPD.
- 2. Structure the Presentation in two Parts:
 - Part I: Disease Risk Index
 - Part II: Measurement Certainty

What is COPD ?

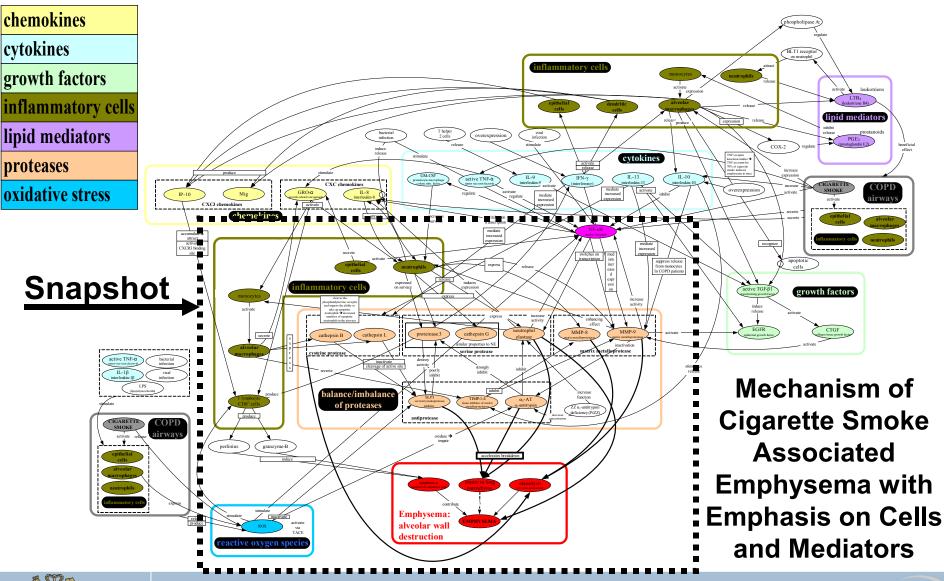
- A respiratory disease characterised by irreversible airflow obstruction
- Three classic pathologies:
 - Emphysema (airspace enlargement and destruction of lung parenchyma)
 - Chronic Bronchitis (mucus plugging of the airways)
 - Chronic Obstructive Bronchiolitis (obstruction of small airways)
- Associated with an abnormal inflammatory response of the lungs to noxious particles or gases
- Cigarette smoking is the most important risk factor



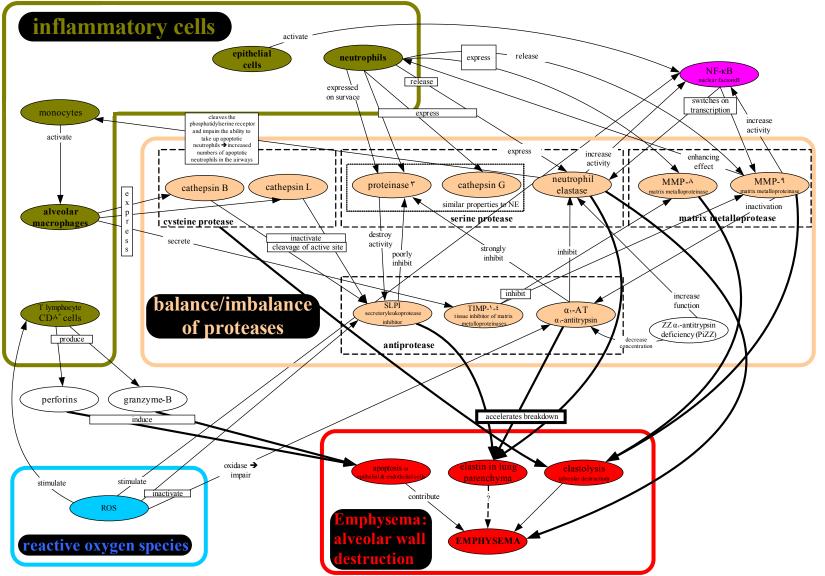
PART I: The Preliminary (Vers. 1) Model: presented at the SRA in Baltimore, 2006


Data for Modeling Key Events in Emphysema:

Literature analysis reveals that a number of key biological events may be associated with the development COPD <u>Example</u>: Recruitment of neutrophils to the lung triggers the release of proteases that can lead to emphysema



The Vers. 1 Model : Model Emphysema Mortality with Hugin Expert

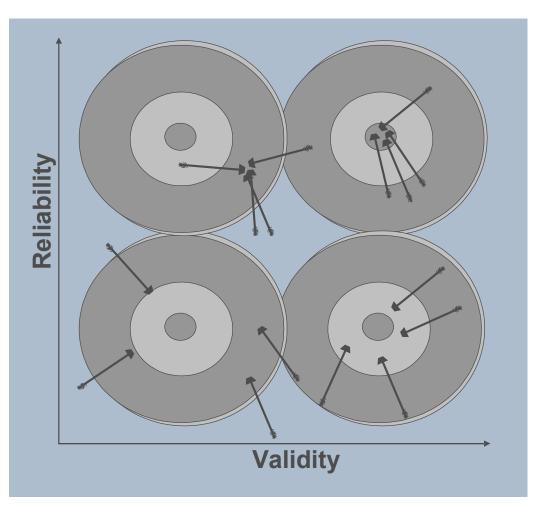


The Vers. 2 Model : Disease Mechanism Network Based on Literature

The Vers. 2 Model : Transforming the Disease Network into a Bayesian Network

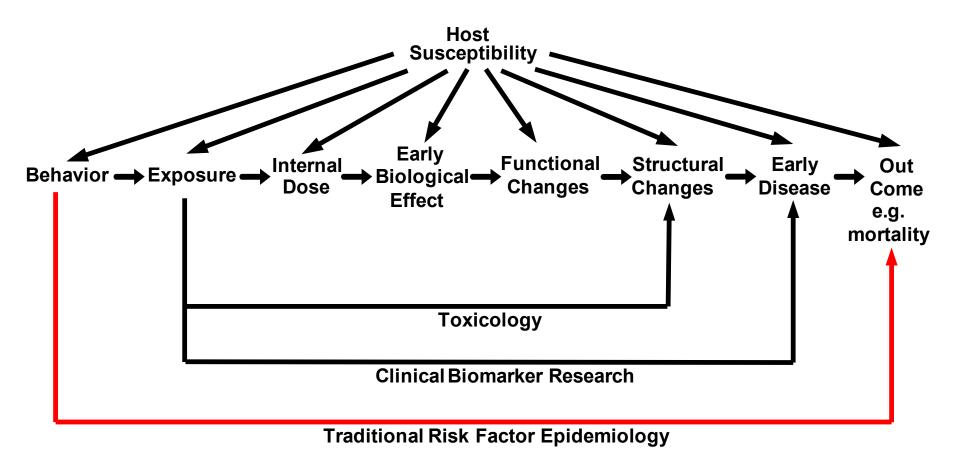
PART II: Measurement Certainty Some Sources of Measurement Uncertainty

- incomplete definition of the measure
- biased sample
- environmental factors
- human factors (lab personnel)
- insensitive assay/equipment
- data processing error
- random error (background noise)

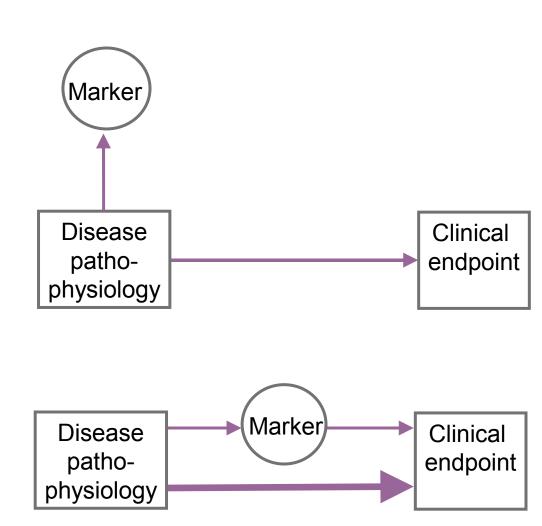


Reliability and Validity

Reliability is about precision


• Validity is about truth

Generic Pathophysiological Model



Validation: Caveats and Pitfalls

• Even a close association of a marker with a healthoutcome (phenotype) does <u>not</u> prove a causal relation.

→ "a correlate does not a surrogate make" (Fleming & DeMets, 1996.

- A marker must not necessarily be in the causal pathway of the disease process
- There might be other, more important pathways leading to the disease

Our Measurement Certainty Metric (MCM)

- Reliability (R) Precision of measurement (P)
 - Quality of study **(Q)**

 $\mathsf{R} = \mathsf{P} \bullet \mathsf{Q}$

- Validity (V) Impact of measurement (I)
 - Design of study (D)

 $V = I \cdot D$

$MCM = R \cdot V = P \cdot Q \cdot I \cdot D$

Certainty Criteria

Measurement Precision (P)		Study Quality (Q)		Measurement Impact (I)		Study Design (D)			
5	established stand. measurement procedure, nearly completely precise	Ę	all major and most minor quality criteria fulfilled	5	parameter proximate to health outcome (establ. clinical endp.)	5	collection of cohort and/or case control health-outcome studies		
4	established stand. measurement procedure	4	study conclusive, not all major quality criteria fulfilled	4	parameter assoc. with organic functioning (establ. surrogate endpoint)	4	health-outcome study (cohort or case-control)		
3	stand. measurement principle, literature evidence supporting reliability	(')	study partially conclusive, some major quality criteria fulfilled	3	parameter rel. to organic functioning or established consistent literature evidence (established biom.)	3	experiment in humans (clinical study)		
2	standard. & practical meas. principle, internal evidence supporting reliability	2	study partially conclusive, serious methodological flaws	2	parameter assoc. with pathogenetic mechanism, (new biomarker)	2	animal study		
1	standard. & practical measurement princ. Insufficient evidence on reliability available	1	some but inconsistent evidence, replication required	1	parameter assoc. with pathogenetic mechanism, lack of evidence on funct. relevance (new assay)	1	experiment in-vitro		
0	none of the above	(none of the above	0	none of the above	0	none of the above		

Certainty Criteria: Range & Example

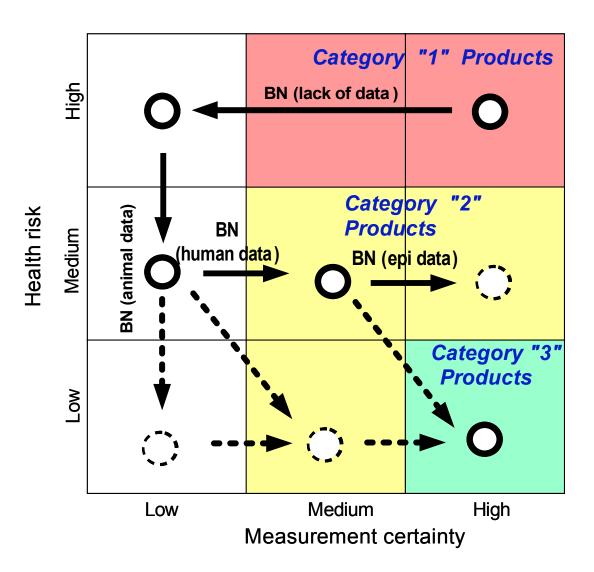
R = $P \cdot Q : 0 - 25$		Measurement Impact (I)		Study Design (D)
V = $I \cdot D : 0 - 25$ MCM = $R \cdot V : 0 - 625$	5		5	
MCM% = MCM/625 • 100	4		4	
$V_1 = I \cdot D = 5 \cdot 5 = 25$	3		3	
$V_2 = 1 \cdot D = 1 \cdot 5 = 5$	2		2	
	1		1	
	0		0	

Pilot Study

- February/March 2007
- Four different study reports
- Application of the multidimensional Measurement Certainty Metric (MCM)
- Five assessors with different scientific background

Summary Statistics of Pilot Study

	<i>in vitro</i> (AMES)	animal study	clinical study	clinical study	coefficient of variation
Quality	4.8	3.8	4.6	3.7	0.24
Precision	4.4	4.8	4.4	4.6	0.14
Reliability	21.3	18.8	20.6	17.6	
Design	1	2	3	3	0.00
Impact	3.2	3.2	1.9	2.9	0.37
Validity	3.2	6.4	5.7	8.7	
CERTAINTY (MCM %)	11.0	18.8	17.8	26.3	


SD

mean_MCM

4

Σ

A Where will we be using the Bayesian Network and reliable epidemiological studies?

The End

