Pulmonary Neoplasia in Strain A Mice following Long-Term Tobacco Smoke Inhalation

Rosemarie B. Lichtner

Philip Morris International, Neuchâtel, Switzerland

American College of Toxicology, 29th Annual Meeting, Tucson, Arizona, USA, 9-12 November 2008

The A/J Mouse as a Lung Tumor Model

- Philip Morris International is committed to the development of Reduced-Risk Tobacco Products. This requires a state-of-the-art scientific approach to assess the disease risk of new products
- Animal models with enhanced lung tumor formation after exposure to cigarette smoke are required to substantiate a reduced risk
- The A/J mouse has been shown to respond to cigarette smoke exposure with enhanced lung tumor formation after a recovery period of several months (Witschi et al., 1997; D'Agostini et al., 2001; Stinn et al., 2005; Curtin et al., 2004)

Nodules in the A/J Mouse Lung

hyperplasia bronchioloalveolar adenoma bronchioloalveolar adenocarcinoma

Objectives of A/J Mouse Lung Cancer Study

Characterize the effects of chronic MS exposure on lung tumor response with respect to relevance for human tumors:

- Time course (5, 10, and 18 months exposure)
- Increasing MS concentrations (0, 150, and 300 mg total particulate matter [TPM]/m³)
- Different post-exposure periods (up to 13 months)

Endpoints:

- Classical histopathology of step-serial sections to differentiate and quantify proliferative lesions and bronchiolo-alveolar adenomas and adenocarcinomas
- Gene expression analysis of tumor nodules and normal lung tissue
- *K-ras* mutation analysis in cells from lung nodules
- Analysis of bronchoalveolar lavage fluid (BALF) (see poster #33)

Exposure Regimens of A/J Mouse Study

Exposure: Exposure mode: MS concentrations: 6 hours/day, 5 days/week whole-body 150 and 300 mg TPM/m³ (MS-150 and MS-300)

Histopathological Evaluation of Lung Tumor Multiplicity: 5 mo Exposure + 13 mo Post-Exposure

Histopathological Evaluation of Lung Tumor Multiplicity: 10 mo Exposure + 8 mo Post-Exposure

Histopathological Evaluation of Lung Tumor Multiplicity: 18 mo Exposure

Lung Tumor Multiplicity:18-Month Dissection

mRNA Expression Analysis of Normal Lung Tissue and Nodules

PROCEDURE

- Laser capture microdissection (LCM) of lung nodules and normal lung tissue
- mRNA analysis using Agilent technology

RESULTS

 Normal lung tissue: differential gene expression pattern was induced by MS exposure

Kinetics for Genes Coding for Antioxidant and Phase I/II Xenobiotic-Metabolizing Enzymes: Normal Lung Tissue

gene symbol	0.5 month	2 months	5 months	5 months 2 days	5 months 4 months	5 months 13 months	18 months	← exposure ← post-exposure
ftl2	1.5	2.1	2.0	1.3	1.4	_	1.9	
gclc	6.4	6.7	5.7	1.1	—	—	4.0	
gclm	3.4	3.7	4.1	-1.2	—	-1.4	2.8	
gpx2	2.8	3.1	2.5	-1.4	—	—	—	
gsr	2.5	2.5	2.1	-1.0	-1.3	—	2.0	
hmox1	2.7	4.5	4.4	1.6	—	1.5	4.8	
maff	2.6	2	2.7	-1.2	—	—	2.0	
nqo1	6.4	6.5	6.0	-1.2	—	—	9.4	
txnrd1	4.1	3.6	3.6	1.1	—	—	2.4	
adh7	6.4	10.6	10.0	-1.1	—	—	3.2	
aldh3A1	5.6	7.2	7.3	-2.2	—	—	11.0	
akr1B8	4.2	4.3	4.4	1.6	—	—	3.1	
cyp1A1	64.7	67	67.4	-5.1	—	—	100.0	
cyp1B1	10	10.6	8.3	1.5	—	—	44.0	
gsta1	5	6.3	5.3	-1.7	—	—	2.1	
gsta2	5.7	7.2	6.5	-1.7	—	—	2.3	

Increase of 2-fold or more

Kinetics for Genes Coding for Inflammatory Responses: Normal Lung Tissue

gene		0.5 month	2 months	5 months	5 months	5 months	5 months	18 months	← exposure
symbol	alias				2 days	4 months	13 months		← post-exposure
ccl2	mcp-1	2.5	3.2	3.5	4.2	5.2	2.9	5.2	chemokines
ccl3	mip-1α	6.7	7.3	7.8	8.3	8.9	3.3	9.7	chemokines
ccl6	mrp-1	3.8	6.9	6.1	5.7	3.2	2.2	6.1	chemokines
ccl20	mip-3α	7.6	5.1	3.6	2.7	3.4	2.1	3.6	chemokines
ccl5	rantes	-1.9	-2.0	-2.7	-1.6	—	2.2	—	chemokines
cxcl1	groα, kc	7.8	9.1	5.6	6.2	3.8	2.5	9.6	chemokines
cxcl5	ena-78	64	59.5	30.1	7.2	2.1	16.7	76.7	chemokines
cxcl9	mig	2.1	3.8	4.4	4.9	—	3.7	3.5	chemokines
cxcl10	IP-10	2.3	1.9	3.0	5.3	—	2.2	2.5	chemokines
saa3		16.4	17.2	13.6	15.9	10.5	—	28.9	acute-phase response
orm2		3.2	2.8	2.8	2.4	4.4	2.8	33.7	acute-phase response
cd68		2.8	4.7	5.1	4.0	3.3	1.8	4.8	macrophage marker
msr		3.6	10.3	8.4	5.6	3.4	—	6.8	macrophage marker
mmp12		7.1	10.2	10.5	8.8	20.4	2.4	7.1	matrix metallopeptidase
timp1		3.4	2.9	2.5	2.0	1.8		6.9	tissue inhibitor of metalloproteinase 1
slpi		1.2	3.1	2.6	2.0	2.6	2.8	5.7	secretory leukocyte protease inhibitor
ctsk		5.3	8.9	8.8	5.2	4.3	1.4	6.4	cathepsin K
ctss		2	5.4	5.9	5.3	2.3	—	2.5	cathepsin S

≥ 2-fold decrease

mRNA Expression Analysis of Normal Lung Tissue and Nodules

PROCEDURE

- Laser capture microdissection (LCM) of lung nodules and normal lung tissue
- mRNA analysis using Agilent technology

RESULTS

- Normal lung tissue: differential gene expression pattern was induced by MS exposure
- Lung nodules: no differential gene expression pattern was induced by MS exposure (31 nodules, 14 normal lung tissues)

Possible explanations

Technical reasons: mainly ruled out

Biological reasons: High heterogeneity of nodules: e.g., independent transformation events, different tumor progression stages, and mixture of adenoma and carcinoma.

K-ras Mutation analysis of Lung Nodules from MS-exposed A/J Mice

PROCEDURE

- LCM of lung nodules from snap-frozen tissue and formalin-fixed, paraffinembedded tissue
- Isolation of DNA, amplification with subsequent sequencing of the Exon 1 and Exon 2 fragments of the *K-ras* gene, mutation analysis of the hotspots: codons 12, 13, and 61

RESULTS

• No MS-specific pattern was observed

K-ras Mutations in LCM-derived Lung Nodules: No MS-specific Pattern

Totals for snap-frozen tissue and formalin-fixed, paraffin-embedded tissue combined.

	# of Tumo <i>ras</i> Mutat	ors and <i>K-</i> ions	Incidence of <i>K-ras</i> mutations	# of <i>K-ras</i> Mutations in Hotspot Codons			# of Trans- versions
Group	Tumors	Mutations	%	12	13	61	12 G → T
18 mo control	11	8	73	4	0	4	2
18 mo MS	14	12	86	6	0	6	3

A/J mice exposed to cigarette smoke: major findings

- Significant, concentration-dependent enhancement of lung tumors, i.e., adenomas and adenocarcinomas
- No obvious shift in tumor spectrum (from adenoma to adenocarcinoma)
- Differential gene expression in normal lung tissue
 - 3 main classes: genes related to oxidative stress, xenobiotic metabolism, or inflammatory processes
- No differential gene expression in isolated lung nodules
- No MS-specific mutation pattern in exons 1 and 2 of the *K-ras* gene

- Chronic exposure (18 mo) of A/J mice to cigarette smoke results in increased lung tumor formation
- Dose-dependency and good reproducibility of cigarette-smokedependent increased lung tumor formation in A/J mice
- The relevance of the A/J mouse model for cigarette-smoke-induced lung tumors in humans requires further validation

Acknowledgement

Co-authors

- Ansgar Bűttner (Philip Morris Research Laboratories, Cologne, Germany)
- Stephan Gebel (Philip Morris Research Laboratories, Cologne, Germany)
- Hans-Jűrgen Haussmann (toxicology consultant, Roesrath, Germany)
- Walter Stinn (Philip Morris Research Laboratories, Cologne, Germany)
- Frans van Overveld* (Philip Morris Research Laboratories, Leuven, Belgium)

*Current address: Kessel-Lo, Belgium

Special thanks also to all colleagues at Philip Morris Research Laboratories (Leuven, Belgium and Cologne, Germany) for providing excellent support

This work was supported in part by Philip Morris USA

