Inflammatory Processes in a Mouse Model of Chronic Pulmonary Diseases by Cigarette Smoke Inhalation

Hans-Juergen Haussmann Toxicology Consultant, Roesrath, Germany Erik Van Miert Philip Morris Research Laboratories byba, Leuven, Belgium

Walter Stinn

Philip Morris Research Laboratories GmbH, Cologne, Germany

Presentation Outline

- Background and research need
- Program objective, study design
- Disease model
 - Emphysema
 - Lung tumors
- Mechanistic evaluations
 - Gene expression (in non-tumor lung tissue, hypothesis-driven evaluation)
 - Inflammatory markers in bronchoalveolar lavage (BAL)
- Summary and conclusion

Background and Research Need

- Smoking is a cause of multiple severe chronic diseases, such as lung cancer and emphysema.
 - Common and distinct mechanisms suggested
- The 5-year overall survival rate for lung cancer has remained at 15% for several decades
 - Late discovery of tumors in advanced stages
 - High metastatic potential even at early stages
- Need for interventions and improved diagnostics
 - <u>No smoking</u>
 - Biomarkers of disease
 - Therapies
 - Chemoprevention
 - Less risky tobacco products

Improved mechanistic understanding and disease models required

Role of Non-Clinical Disease Models

- Lung cancer: approx. 80% of cases in humans are non-small cell lung cancers, with adenocarcinoma being the most prevalent and increasing in incidence
- Laboratory animal models develop pulmonary adenoma and adenocarcinoma as well as emphysema
- Non-clinical disease models involving chronic smoke inhalation
 - Not widely used
 - No general agreement on study design
 - Limited mechanistic understanding

Program Objective and Design

- Develop smoking-related non-clinical disease models for lung cancer and emphysema
- Evaluate the role of inflammatory processes
- Animal model: A/J mouse (males)
 - Susceptible for spontaneous and chemically induced pulmonary tumorigenesis (Kras-dependent)
 - Reproducible development of lung tumors with an environmental tobacco smoke surrogate (after post-inhalation period only)
 - Reproducible development of emphysema with cigarette mainstream smoke (MS) inhalation (~ 5 to 6 months)
- End points:
 - Histopathology, incl. morphometry
 - gene expression changes in whole lung (without tumors)
 - molecular and cellular inflammatory endpoints in bronchoalveolar lavage fluid

Study Design

Inhalation: Mainstream smoke conc.: 300);

6 hours/day, 5 days/week (whole-body) 0, 150, and 300 mg TPM/m³ (sham, MS-150, and MS-Reference Cigarette 2R4F

Sham-Exposure

Dissection time points for lung cancer morphology; similar for other end points.)

Presentation Outline

- Background and research need
- Program objective, study design
- Disease model (histopathological evaluations)
 - Emphysema
 - Lung tumors
- Mechanistic evaluations
 - Gene expression (in non-tumor lung tissue, hypothesis-driven evaluation)
 - Inflammatory markers in bronchoalveolar lavage (BAL)
- Summary and conclusion

Time Course of Emphysema Development

8/25 EUROTOX 2009, Workshop V; Dresden, Germany; 14 September 2009

Time Course of Emphysema Development

9/25 EUROTOX 2009, Workshop V; Dresden, Germany; 14 September 2009

Time Course of Emphysema Development

followed by Tukey post-hoc test)

10/25 EUROTOX 2009, Workshop V; Dresden, Germany; 14 September 2009

Lung Tumor Formation

Lung Nodules

300 µm step-serial sectioning, WHO classification

Bronchioalveolar

Adenoma

Adenocarcinoma

(N = 22 to 36; mean \pm SE; ANOVA followed by Tukey test)

Dose-Response Relationship after 18 Months of Inhalation

Time Course of Tumor Development

Adenoma Multiplicity

Adenocarcinoma Multiplicity

(N = 20 to 39; mean ± SE; ANOVA with sham, MS-150, and MS-300, followed by Tukey test)

Presentation Outline

- Background and research need
- Program objective, study design
- Disease model
 - Emphysema
 - Lung tumors
- Mechanistic evaluations
 - Gene expression (in non-tumor lung tissue, hypothesis-driven evaluation)
 - Inflammatory markers in bronchoalveolar lavage (BAL)
- Summary and conclusion

Transient Gene Induction by Smoke Exposure

Gene	Activity	Fold Change after Inhalation and Post-Inhalation Periods (months)							
Symbol		۰ <u>.</u> ۰ + ۰	۲ <u></u> ۰+ ۰	° + ·	۰ + ۲ d	0 + ź	0 + 17	۱۸ + ۰	

(MS-300 relative to time-matched sham controls; Agilent mouse genome oligo microarray (44K)

Groups of data columns 1 to 4: 4 lungs pooled for testing; groups of data columns 5 to 7: 4 lungs tested individually; Significance criteria: p<0.05, 2-fold change)

Scheme for Immunological Reactions to Smoke Inhalation, Step 1 (Possibly Reversible)

Gene Expression Changes Representative of an Innate Immune Response

Gene	Activity	Fold Change after Inhalation and Post-Inhalation Periods (months)						
Symbol		0.5 + 0	2.5 + 0	5 + 0	5 + 2 d	5 + 4	5 + 13	18 + 0
Innate Imr	nune Response:							
il1r2	IL-1 receptor 2	4.6	4.0	4.4	1.5	2.0	3.6	20
il1rn	IL-1 rec. antag.	3.9	4.9	4.2	4.3	7.2	1.3	8.0
il1a	IL-1α	1.9	2.1	2.4	2.7	2.7	-1.1	2.9
il6	IL-6	2.5	3.2	1.8	1.8	-1.8	1.1	3.2
cxcl1	KC (IL-8)	7.8	9.1	5.6	6.2	3.8	2.5	9.6
ccl2	MCP-1	2.5	3.2	3.5	4.2	5.2	2.9	5.2
tnfa	TNF-α	1.7	1.7	1.6	1.6	2.0	2.2	2.9
csf2	GM-CSF	1.7	1.9	1.7	3.6	1.6	1.7	2.6

Early Immune Responses (Assessed in Bronchoalveolar Lavage)

(N = 6 to 10; median and 25/75% quartiles for mediators, mean ± SE for cells; ANOVA with sham, MS-150, and MS-300, followed by Tukey test)

PMI RESEARCH & DEVELOPMENT

Scheme for Immunological Reactions to Smoke Inhalation, Steps 2 and 3 (Probably Irreversible)

Gene Expression Changes Representative of Dendritic Cell Maturation as well as T Cell and

Macrophage Activation

Gene	Activity	Fold Change after Inhalation and Post-Inhalation Periods (months)						
Symbol		0.5 + 0	2.5 + 0	5 + 0	5 + 2 d	5 + 4	5 + 13	18 + 0
Dendritic C	ell Markers:						_	
cd80	CD80	1.2	1.2	1.2	1.4	3.5	1.7	3.5
cd86	CD86	1.6	2.3	2.0	2.0	1.9	2.1	2.4
il12b	IL-12 p40	1.8	2.3	2.4	2.8	1.7	2.8	4.9
Ligands Inv	olved in T Cell Act	<u>ivation:</u>						
ccl20	MIP-3α	7.6	5.1	3.6	2.7	3.4	2.1	3.6
cxcl9	MIG	2.1	3.8	4.4	4.9	1.9	3.7	3.5
cxcl10	IP-10	2.3	1.9	3.0	5.3	1.4	2.2	2.5
Macrophage Activation Markers:								
cd68		2.8	4.7	5.1	4.0	3.3	1.8	4.8
msr1	scavenger rec.	2.8	6.6	7.0	3.9	3.9	1.6	7.7
npy	neuropeptide Y	1.9	6.3	5.3	6.4	55	2.9	23

Lymphocyte Response

Total Lymphocyte Number in BAL

(N = 6 to 10; mean ± SE for cells; ANOVA with sham, MS-150, and MS-300, followed by Tukey test)

No change in lymphocyte differentiation (collected from lung-associated lymph nodes)

Gene Expression Changes Representative of Protease/Antiprotease Imbalance

Gene	Activity	Fold Change after Inhalation and Post-Inhalation Periods (onths)
Symbol		0.5 + 0	2.5 + 0	5 + 0	5 + 2 d	5 + 4	5 + 13	18 + 0
Proteinases	5:							
mmp12 ctsk adam8	metalloprot. cathepsin K metallopeptid.	7.1 5.3 2.5	10 8.9 3.6	11 8.8 3.9	8.8 5.2 3.0	20 4.3 2.2	2.4 1.4 1.2	7.1 6.4 2.7
<u>Proteinase</u>	Inhibitors:							
timp1 slpi		3.7 -1.7	2.9 1.4	2.5 -1.3	2.0 -1.5	1.8 2.6	1.6 2.8	5.4 5.7
serpina10	α ₁ -antiprotease	-1.1	1.1	2.5	1.6	2.2	2.8	5.8

Concepts for the Role of Inflammation in COPD <u>and</u> **Lung Cancer**

- Common mechanisms (Yao and Rahman, 2009), e.g.:
 - Dysregulated inflammatory responses
 - Epithelial-to-mesenchymal transition
- Reduced incidence of lung cancer after anti-inflammatory corticosterone inhalation (Parimon et al., 2007)
- Relevance of emphysematous changes for tumorigenesis (Houghton et al., 2008):
 - Emphysema as a smoking-independent risk factor for lung cancer
 - Repair or maintenance activity as proliferative stimulus
 - Proteolytic activation of growth factors
 - Current study: increased expression of genes coding for, e.g., EGFR ligands (amphiregulin, epiregulin, betacellulin), insulin-like growth factor-1, and several fibroblast growth factors

Summary and Conclusions

- Successful development of a chronic mainstream smoke inhalation model for lung adenocarcinoma and emphysema in A/J mice
- Pronounced modulation of inflammatory processes:
 - Clear genotypic and phenotypic patterns of inflammation
 - Transient and sustained changes in gene expression and phenotypic markers upon cessation of smoke exposure
- Causal role of inflammatory effects in the chronic pathogenesis developing in this mouse model and their relevance to human smoking-related diseases remains to be established
- Current study concept in line with US National Heart, Lung, and Blood Institute workshop conclusions (Punturieri et al., 2009): Lung cancer and COPD:

Needs and Opportunities for Integrated Research, e.g., use of animal models

Acknowledgements

Staff at Philip Morris Research Laboratories byba in Leuven, Belgium, and at Philip Morris Research Laboratories GmbH in Cologne, Germany,

in particular:

Frans van Overveld Ansgar Buettner Baerbel Friedrichs Sonja Luetjen Stephan Gebel Rosemarie B. Lichtner

This work was supported in part by Philip Morris USA, Inc. prior to the spin-off of Philip Morris International, Inc. by Altria Group, Inc. on March 28, 2008.

Thank you very much for your attention!

