From Cellular Genotype to Cigarette Smoke-Induced Phenotype: The Case of Nrf2

<u>Thomas Müller</u> and Jutta Schüller Philip Morris International R&D Molecular Mechanisms of Environmental Response to Food and Oxygen III

9-11 February 2009, Sendai, Japan

Outline

- Introduction
- Nrf2 activation by cigarette smoke in vitro
 - Mechanistic investigations using the *hmox1* paradigm
- Nrf2 activation by cigarette smoke in vivo
 - The cigarette-smoke-induced transcriptome in Nrf2^{-/-} vs.
 Nrf2^{+/+} mice
 - The cigarette-smoke-induced *phenotype* in Nrf2^{-/-} vs.
 Nrf2^{+/+} mice
- Final remarks

Introduction

Cigarette smoke (CS) induces a paramount antioxidant- and Phase II-related response

in vitro

in vivo

Heatmap excerpt (Gebel et al., 2006)

Nrf2 activation by cigarette smoke *in vitro*: The *hmox1* paradigm

The *hmox1* promoter/enhancer region:

Promoter deletion analysis in the context of Nrf2 downregulation in NIH3T3 cells by RNAi

Thomas Müller and Jutta Schüller Sendai, February 2009

Effect of Nrf2 down-regulation on CS-dependent HO-1 expression

Thomas Müller and Jutta Schüller Sendai, February 2009 (Knörr-Wittmann et al., 2005)

Activation of Nrf2 in CS-exposed cells

<u>Thomas Müller</u> and Jutta Schüller Sendai, February 2009 7 of 32 PHILIP MORRIS

Down-regulation of Nrf2 abrogates CS-dependent induction of Phase II model genes

Sendai, February 2009

Conclusion (I)

In vitro, CS induces Nrf2 by a canonical mechanism

Thomas Müller and Jutta Schüller Sendai, February 2009

Nrf2 activation by cigarette smoke in vivo

(Gebel *et al.*, in prep.)

Inhalation Study Design:

Animals: \bigcirc Nrf2+/+ and Nrf2-/- miceExposure:Whole body; 2, 3, or 4 h/d; 5 d/wkCS concentration:125 (single) or 750 µg TPM/l x h

exposure	post- exposure	sham*	single (375 µg)	low (1500 μg)	medium (2250 µg)	high (3000 µg)
1 day	-	X	X	-	-	-
2 months	-	X	-	-	X	-
5 months	-	X	-	X	X	X
5 months	1 days	X	-	X	X	X
5 months	13 days	X	-	-	X	-

*fresh air exposure

Thomas Müller and Jutta Schüller Sendai, February 2009

Nrf2 activation by cigarette smoke in vivo

Inhalation Study Endpoints:

Transcriptome:

Genome-wide Affymetrix-based analysis of all groups

Phenotype:

- In-life observations: body weight development
- Pathology
- Inflammation/BAL fluid
- Functional respiratory changes (forced pulmonary maneuvers)

The CS-induced *transcriptome* in Nrf2^{-/-} vs. Nrf2^{+/+} mice

Thomas Müller and Jutta Schüller Sendai, February 2009

Genes coding for antioxidant and Phase I/II xenobiotic-metabolizing enzymes

Exposure	1 d	1 d	2 m	2 m	5 m	5 m	5 m	5 m	5 m	5 m
Post exp.	-	-	_	-	_	-	1 d	1 d	13 d	13 d
	+/+	-/-	+/+	-/-	+/+	-/-	+/+	-/-	+/+	-/-
ftl2	1.3		_		—		—		1.7	
gclc	2.4		2.4		2.1		—		—	
gclm	2.4		2.9		2.2		—		—	
gpx2	2.1		3.6		2.3		1.1		1.2	
gsr	2.0		2.1		2.0		—		—	
hmox1	2.2		2.8		3.1		2.1		2.0	
nqo1	14.2		8.9		12.7		1.5		1.3	
txnrd1	2.0		2.3		2.3		—		—	
adh7	2.2		4.2		2.8		—		—	
aldh3A1	5.0		7.9		4.3		—		—	
akr1B8	3.9		4.9		4.5		1.8		1.5	
cyp1A1	62.1		108.8		78.4		—			
cyp1B1	5.2		14.4		23.9		3.1		2.9	
gsta1	3.8		4.6		3.5		—		—	
gsta2	2.3		2.8		2.5		—		—	
					Nr	f2				

Thomas Müller and Jutta Schüller Sendai, February 2009

Genes involved in the inflammatory response

Exposure	1 d	1 d	2 m	2 m	5 m	5 m	5 m	5 m	5 m	5 m
Post exp.	-	-	-	-	-	-	1d	1 d	13 d	13 d
gene alias	+/+	-/-	+/+	-/-	+/+	-/-	+/+	-/-	+/+	-/-
ccl2 mcp-1	—		5.5		4.0		10.7		5.6	
1 ccl 3 mip 1 ccl 3			11.5		8.5		12.3		13.3	
ccl20 min3a	2.0		4.0		3.4		3.7 2 Q		4.0	
ccl5 rantes			-1.3		-2.3		-3.3		-1.1	
cxcl1 gro-α, kc	2.9		18.2		9.9		15.2		8.4	
cxcl5 ena-78	—		154.1		23.8		29.4		10.5	
cxcl9 mig			6.7		7.8		9.0		6.2	
CXCITU IP-10			2.2		3.0		11.0		3.7	
saa3	2.3		53.3		25.0		55.4		40.8	
orm2	3.5		17.8		35.6		24.9		4.9	
cd68	—		3.5		4.4		5.4		4.8	
msr			5.8		9.8		10.7		7.9	
mmp12			20.8		19.4		14.5		19.6	
timp1	2.8		3.0		3.1		3.5		3.0	
slpi			—		1.4		3.2		2.8	
ctsk			5.9		19.3		16.3		19.6	
ctss			2.1		2.7		2.6		2.7	
					Ν	lrf2				

Thomas Müller and Jutta Schüller Sendai, February 2009

Nrf2 induces a transcriptional response aimed at counteracting insults from CS-dependent stress

CS exposure creates a complex pattern of gene down- and up-regulation which is both Nrf2- and dose-dependent (K. Taguchi and M. Yamamoto, pers. comm.)

Exposure		1 d	lay		2	mo	nths	6									5	mo	nth	s								
Post exp.		_	_			_								– 1 day							13 day			'S				
Nrf2	w	т	K	0	W	Т	K	0		WT	•			K)			W	Т			K)		V	νT	к	0
CS dose	_	++	_	++	_	++	_	++	_	+	++	+++	_	+	++	+++	_	+	++	+++	-	+	++	+++	_	++	_	++
Tnnc2	1.00	0.30	0.32	0.68	1.00	0.50	0.49	0.60	1.00	0.45	0.45	0.99	0.45	0.45	0.45	0.45	1.00	0.99	0.99	0.99	0.99	0.99	0.98	0.99	1.00	1.01	1.59	2.15
Tnni1	1.00	0.68	0.69	1.11	1.00	0.80	0.80	0.80	1.00	0.61	0.61	0.76	0.61	0.61	0.61	0.60	1.00	1.00	0.99	1.00	1.00	0.99	0.99	1.00	1.00	1.02	1.01	1.35
Tnni2	1.00			0.77	1.00	0.77	0.70	0.85	1.00	0.65	0.64	0.99	0.66	0.73	0.64	0.68	1.00	1.06	1.06	1.11	1.00	1.11	1.05	1.06	1.00	1.39	1.08	1.85
Tnni2	1.00			0.74	1.00	0.64	0.59	0.80	1.00	0.59	0.61	1.10	0.54	0.67	0.58	0.74	1.00	1.03	1.12	1.16	0.94	1.05	1.15	1.14	1.00	1.30	1.31	2.13
Tnnt3	1.00			0.75	1.00	0.60	0.59	0.79	1.00	0.53	0.53	0.99	0.55	0.53	0.54	0.56	1.00	0.92	0.92	0.94	0.92	1.03	0.91	0.94	1.00	1.02	1.32	1.80

- In Nrf2^{+/+} mice, numerous genes are down-regulated after exposure to low and medium doses of CS
- Some genes show attenuated expression in Nrf2^{-/-} mice exposed to fresh air, but an "Nrf2^{+/+}-like" expression profile when exposed to CS (also seen in Nrf2^{+/+} mice at the highest dose)
- The effect of CS exposure is abrogated after exposure is discontinued (1 day)
- In Nrf2^{-/-} mice, some genes become induced only after CS exposure is discontinued (13 days)

Comparison of gene expression rates from sham Nrf2 +/+ and Nrf2 -/- mice vs. unexposed Keap1 cond. KO mice... (K. Taguchi and M. Yamamoto, pers. comm.)

17 of 32

INTERNATI

Thomas Müller and Jutta Schüller Sendai, February 2009 ... identifies new and confirms known Nrf2 target genes with some genes showing age-related adaptation (K. Taguchi and M. Yamamoto, pers. comm.)

= ↑	Age	12v	/k	20	wk	33v	vk	33w	vk	35	iwk	
	Exposure	1d	1d	2m	2m	5m	5m	5m	5m	5m	5m	o Nrf2 -/- Nrf2 +/+ Keap1 CCSP-
= +	Post exp.	-	-	-	-	-	-	1d	1d	13d	13d	wk 12; 20; 33-35 12 wk
Sene												
Nfe212		1.00	0.20	0.99	0.19	1.00	0.20	0.98	0.21	0.99	0.20	Nrf2 target genes: ↓ ± ↑
Nqo1	14.8	1.00	0.63	0.91	0.55	0.93	0.60	0.74	0.64	0.84	0.63	
Gpx2	4.0	1.00	0.72	0.96	0.63	1.00	0.64	0.92	0.71	0.90	0.70	
Aldh3a1	12.8	1.00	0.80	0.87	0.69	0.91	0.77	0.85	0.81	0.79	0.68	
Aox1	2.5	1.00	0.74	0.99	0.76	1.02	0.69	0.96	0.79	0.99	0.62	
Ces1	13.3-13.5	1.00	0.42	0.88	0.41	0.92	0.40	0.86	0.41	0.89	0.42	
Dsc2	3.0-4.2	1.00	0.68	0.81	0.59	0.81	0.79	0.76	0.66	0.67	0.68	Nrf2 itself
Pp11r	2.3	1.00	0.76	0.83	0.72	0.86	0.78	0.84	0.77	0.95	0.70	Nfa0l0
I mem40	1.5-1.6	1.00	0.69	0.81	0.71	0.94	0.87	0.90	0.80	0.86	0.78	NIEZIZ
Tmem450	2.3	1.00	0.78	0.98	0.03	0.92	0.77	0.90	0.05	0.57	0.00	
Tnni1	3.0	1.00	0.74	0.85	0.74	0.97	0.74	0.75	0.74	0.74	0.75	Typical Nrf2-target genes
110032404Rik	1.1-1.9	1.00	0.09	0.85	0.08	0.95	0.00	0.09	0.09	0.82	0.08	Ngo1 : NAD(P)H: guinone oxidoreductase 1
A ny 20	2.1	1.00	0.50	0.05	0.00	0.95	0.67	0.07	0.64	0.02	0.70	Gpx2 · Glutathione peroxidase 2
AU018778		1.00	0.77	1.11	0.72	1.05	0.07	1.03	0.04	1.06	0.70	Aldh2a1 : Aldehyde hydroganaaa 2a1
A030009H04Rik		1.00	0.47	0.88	0.39	0.95	0.44	0.80	0.40	0.82	0.39	Alurisar . Alueriyue riyuroyenase sar
Car3		1.00	0.77	0.92	0.55	0.77	0.68	0.82	0.66	0.52	0.63	Aox1 : Aldehyde oxidase 1
Car3		1.00	0.78	0.97	0.57	0.90	0.81	0.93	0.65	0.60	0.65	Car3 : Carbonic anhydrase 3
Cd109		1.00	0.75	0.84	0.74	0.87	0.78	0.78	0.83	0.71	0.79	Ces1 : Carboxyesterase 1
Cyp1b1		1.00	0.77	0.97	0.58	0.79	0.64	0.92	0.73	0.86	0.75	Dsc2 Desmocollin2
Ddit41		1.00	0.72	0.85	0.74	0.93	0.81	0.76	0.84	0.78	0.79	Dollar : Decontrol protoin 11 related
Itgb6		1.00	0.74	1.16	1.06	1.21	0.87	1.12	1.09	1.21	0.86	
Lad1		1.00	0.71	0.86	0.80	1.02	0.81	0.87	0.78	0.90	0.74	Rapget4 : Rap guanine nucleotide exchange fa
Rapgef4		1.00	0.77	0.88	0.80	0.87	0.68	0.82	0.74	0.82	0.67	Tmem : Transmembrane protein
Slc5a12		1.00	0.74	0.92	0.73	1.06	0.70	0.98	0.71	1.05	0.71	Trex2 : Three prime repair exonuclease 2
Slc5a12		1.00	0.75	1.33	0.74	1.14	0.74	0.82	0.74	1.05	0.74	Tnni1 Trononin 1
Slc25a12		1.00	0.72	1.00	0.72	1.27	0.80	1.00	0.82	1.19	0.75	
Snx6		1.00	0.74	0.73	0.85	0.93	0.74	1.03	1.32	1.26	1.23	
S100a14		1.00	0.79	0.82	0.75	0.87	0.75	0.77	0.78	0.75	0.72	
1700012B18Rik		1.00	0.75	0.98	0.82	1.02	0.80	1.02	0.79	0.97	0.74	
	CKO	+/+	-/-	+/+	-/-	+/+	-/-	+/+	-/-	+/+	-/-	
	KEAP1					Nrf	2					

... identifies new and confirms known Nrf2 target genes with some genes showing age-related adaptation (K. Taguchi and M. Yamamoto, pers. comm.)

= ↑ [Age	12	wk	20	wk	331	vk	33w	/k	35	wk
- +	Exposure	1d	1d	2m	2m	5m	5m	5m	5m	5m	5m
Gene	Post exp.	-	-	-	-	-	-	1d	1d	13d	13d
Dsc1	18.8	1.00	0.60	0.67	0.57	0.78	0.58	0.59	0.59	0.58	0.59
Dsc2	20 4 2	1.00	0.64	0.69	0.64	0.85	0.61	0.71	0.73	0.64	0.64
Dsc2	3.0 - 4.2	1.00	0.68	0.81	0.59	0.81	0.79	0.76	0.66	0.67	0.68
Gsdm1	3.7	1.00	0.50	0.60	0.49	0.71	0.49	0.51	0.50	0.48	0.50
Krtdap	2.9 - 3.1	1.00	0.28	0.58	0.28	0.64	0.28	0.28	0.28	0.28	0.28
KI0	1.0	1.00	0.34	0.65	0.51	0.79	0.56	0.64	0.55	0.50	0.53
Krt14	11.1	1.00	0.40	0.53	0.40	0.68	0.40	0.41	0.40	0.40	0.40
Krt14	16-17	1.00	0.48	0.52	0.47	0.67	0.48	0.48	0.48	0.47	0.48
Mt4	1.0 - 1.7	1.00	0.35	0.58	0.34	0.66	0.35	0.36	0.35	0.34	0.35
Lor	13	1.00	0.79	0.78	0.78	0.78	0.79	0.80	0.79	0.78	0.79
Lor	1.5	1.00	0.27	0.57	0.27	0.65	0.27	0.28	0.28	0.27	0.28
Lor	12	1.00	0.35	0.58	0.32	0.65	0.39	0.34	0.34	0.33	0.33
Nmu	0.5	1.00	0.63	0.63	0.64	0.74	0.63	0.64	0.64	0.63	0.64
Otop3	2.5	1.00	0.60	0.60	0.60	0.77	0.60	0.61	0.61	0.60	0.60
Serpinb11	3.2	1.00	0.37	0.55	0.36	0.67	0.37	0.37	0.37	0.36	0.37
Serpinb12	2.7 - 4.4	1.00	0.36	0.59	0.35	0.65	0.35	0.36	0.36	0.35	0.36
Serpinb2	3.2	1.00	0.41	0.46	0.41	0.65	0.41	0.42	0.54	0.46	0.79
Serpinb3a		1.00	0.51	0.65	0.50	0.73	0.50	0.51	0.52	0.50	0.51
Serpinb3a	3.5 - 4.1	1.00	0.35	0.56	0.35	0.63	0.35	0.36	0.35	0.35	0.35
Serpinb3a		1.00	0.35	0.56	0.34	0.63	0.35	0.36	0.35	0.34	0.35
Serpinb5	3.4	1.00	0.54	0.54	0.54	0.70	0.54	0.55	0.54	0.54	0.54
Serpinb5		1.00	0.50	0.61	0.50	0.69	0.50	0.51	0.50	0.50	0.50
Serpinb7	1.2	1.00	0.50	0.51	0.50	0.72	0.50	0.51	0.50	0.50	0.50
Spink5	4.0	1.00	0.45	0.47	0.43	0.65	0.43	0.44	0.43	0.42	0.43
Sprr1a	15.8	1.00	0.44	0.66	0.46	0.64	0.44	0.45	0.45	0.43	0.44
Sprr1b	15.8	1.00	0.48	0.60	0.47	0.59	0.47	0.49	0.48	0.47	0.48
Sprr2a	1.0 / 8.1	1.00	0.28	0.50	0.28	0.61	0.28	0.28	0.28	0.28	0.28
Sprr3	4.0	1.00	0.28	0.57	0.27	0.62	0.29	0.28	0.28	0.28	0.28
Sprr11	2.3 - 2.4	1.00	0.45	0.65	0.44	0.71	0.45	0.45	0.45	0.44	0.44
Sprr12	1.5	1.00	0.34	0.56	0.34	0.65	0.34	0.35	0.34	0.34	0.34
Sprr13	2.4	1.00	0.46	0.62	0.45	0.68	0.45	0.47	0.47	0.45	0.46
Sprr13		1.00	0.45	0.60	0.44	0.65	0.44	0.45	0.45	0.43	0.44
Sprr15	1.6 - 1.7	1.00	0.42	0.61	0.41	0.70	0.42	0.43	0.42	0.41	0.42
Sprr17	1.8	1.00	0.46	0.63	0.43	0.74	0.45	0.46	0.45	0.43	0.44
Sprr19	3.2	1.00	0.48	0.63	0.47	0.70	0.54	0.49	0.48	0.48	0.53
Tgm3	2.3	1.00	0.46	0.53	0.45	0.77	0.46	0.48	0.46	0.46	0.47
Tgm3		1.00	0.38	0.53	0.38	0.73	0.38	0.39	0.38	0.38	0.38
	СКО	+/+	· -/-	+/+	_/_	+/+	-/-	+/+	_/-	+/+	_/-
	KEAP1					N	rf2				

	Ŷ _	Nrf2 -/- wk 12; 20;	Nrf2 +/+ 33-35	Keap1	CCSP- 12 w	-CKO k
Nrf2 target genes	:	Ļ	±		1	
Dsc1/2 Dsg Gsdm1 Krtdap Krt Lor Nmu Sprr Sprrl Tgm3 Mt4 Serpinb Spink5 Them5	: De : De : Ga : Ke : Lo : Ne : Sr : Tr : Me : Se : Se : Th	esmocollin 1/ esmoglein asdermin 1 (s eratinocyte di eratin ricrin euromedin U nall proline-ri nall proline ri ansglutamina etallothioneir erine (or Cyst erine peptidas ioesterase s	2 skin and digest fferentiation as ich protein ch-like protein ase 1 4 teine) peptidas se inhibitor, ka uperfamily me	ive tract e ssociated e inhibitor zal type 5 mber 5	pitheli proteir	al-specific) 1 e B

	Age	13	wk	20	wk	33w	/k	33\	vk	35	wk
	Exposure	1d	1d	2m	2m	5m	5m	5m	5m	5m	5m
Gene	Post exp.	-	-	-	-	-	-	1d	1d	13d	13d
Dsg1a	1.2	1.00	0.54	0.60	0.52	0.72	0.53	0.54	0.54	0.52	0.53
Dsg1b	0.8 / 1.7 – 3.9	1.00	0.63	0.62	0.59	0.72	0.60	0.62	0.61	0.59	0.62
Dsg3	1.1 / 3.4	1.00	0.63	0.67	0.62	0.78	0.66	0.61	0.63	0.59	0.62
Krt13		1.00	0.35	0.40	0.34	0.67	0.35	0.35	0.35	0.35	0.35
Krt13	0.9 / 1.7	1.00	0.28	0.57	0.28	0.63	0.28	0.28	0.28	0.28	0.28
Krt13		1.00	0.36	0.50	0.36	0.62	0.36	0.37	0.36	0.36	0.36
	ско	+/+	-/-	+/+	-/-	+/+	-/-	+/+	-/-	+/+	-/-
	KEAP1						Nr	f2			

Conclusion (II)

Nrf2^{-/-} mice confirm the central role of Nrf2 in the cell's strategy to combat CS-induced damage and disclose new Nrf2 functions

Genome-wide effects on the *transcriptome* in lungs of Nrf2^{+/+} vs. Nrf2^{-/-} mice in the context of CS-exposure and age:

- CS-exposed Nrf2^{-/-} mice are compromised in the expression of a distinct spectrum of antioxidant and Phase II-related genes
- CS-exposed Nrf2^{-/-} mice compensate somewhat for the lack of Nrf2 during chronic exposure (other transcription factors)
- The acute (single exposure) response to CS inhalation is controlled exclusively by Nrf2 (as concluded from the profile seen in Keap1 CKO mice)
- Genotype-dependent dose effects widely determine CS-dependent gene expression in a complex manner
- Aging Nrf2^{+/+} mice show age-related adaptation to various Nrf2 target genes

The CS-induced *phenotype* in Nrf2^{-/-} *vs*. Nrf2^{+/+} mice: Body weight development

 CS exposure generally reduces body weight development; the effect is most pronounced in in CS-exposed Nrf2^{-/-} mice

The CS-induced *phenotype* in Nrf2^{-/-} *vs*. Nrf2^{+/+} mice: Pathology (Summary)

- Nrf2^{+/+} and Nrf2^{-/-} mice develop lung inflammation as well as alveolar emphysema after 5 months of exposure to CS in a concentration-dependent manner
- Scores for 'mean cord length', an indicator of emphysema, are significantly elevated in CS-exposed (medium and high) Nrf2^{-/-} mice vs. sham
- Scores for 'general lung inflammation', 'macrophage activation', 'destructive index of lung tissue', and 'bronchiolar attachments' were not found to be significantly different between CS-exposed Nrf2^{+/+} and Nrf2^{-/-} mice

The CS-induced *phenotype* in Nrf2^{-/-} *vs*. Nrf2^{+/+} mice: Inflammation/BAL fluid (Summary)

 CS exposure results in a strong increase in free lung cells (FLC) in BAL fluid, which is generally not significantly different between Nrf2^{+/+} and Nrf2^{-/-} mice

Number of FLC (overall)

Thomas Müller and Jutta Schüller Sendai, February 2009

The CS-induced *phenotype* in Nrf2^{-/-} *vs*. Nrf2^{+/+} mice: Inflammation/BAL fluid (Summary)

- CS exposure results in a strong increase in free lung cells (FLC) in BAL fluid, which is generally not significantly different between Nrf2^{+/+} and Nrf2^{-/-} mice
- Discrimination of FLC for neutrophils and lymphocytes (CD4, CD8, and B cells) reveals a trend for increased numbers of lymphocytes in CS-exposed Nrf2^{-/-} mice

The CS-induced *phenotype* in Nrf2^{-/-} *vs*. Nrf2^{+/+} mice: Inflammation/BAL fluid (Summary)

- CS exposure results in a strong increase in free lung cells (FLC) in BAL fluid, which is generally not significantly different between Nrf2^{+/+} and Nrf2^{-/-} mice
- Discrimination of FLC for neutrophils and lymphocytes (CD4, CD8, and B cells) reveals a trend for increased numbers of lymphocytes in CS-exposed Nrf2^{-/-} mice
- Alveolar macrophages respond to CS exposure with an increased expression of activation markers, i.e., CD11b, CD11c, CD86, CD14, and MHCII, which is not significantly different between Nrf2^{+/+} and Nrf2^{-/-} mice
- CS exposure generally results in a strong increase in expression of chemokine and cytokine markers with Nrf2^{-/-} mice showing a trend for an enhanced response in some markers (e.g., CD40,GMCSF, TIMP1, TNFα, VCAM-1, VEGF) and a slightly lower response in others (e.g., IL-1α, IL-1β, Osteopontin)

The CS-induced *phenotype* in Nrf2^{-/-} *vs*. Nrf2^{+/+} mice: Functional respiratory changes (Summary)

'Forced pulmonary maneuvers' revealed:

 Concentration-dependent, statistically significantly compromised 'compliance' (at zero pressure) in Nrf2^{-/-} mice vs. Nrf2^{+/+} mice

The CS-induced *phenotype* in Nrf2^{-/-} *vs*. Nrf2^{+/+} mice: Functional respiratory changes (Summary)

'Forced pulmonary maneuvers' revealed:

- CS concentration-dependent, statistically significantly compromised 'compliance' (at zero pressure) in Nrf2^{-/-} vs. Nrf2^{+/+} mice
- CS concentration-dependent, statistically significantly increased 'total lung capacity' in Nrf2^{-/-} mice

The CS-induced *phenotype* in Nrf2^{-/-} *vs*. Nrf2^{+/+} mice: Functional respiratory changes (Summary)

'Forced pulmonary maneuvers' revealed:

- CS concentration-dependent, statistically significantly compromised 'compliance' (at zero pressure) in Nrf2^{-/-} vs. Nrf2^{+/+} mice
- CS concentration-dependent, statistically significantly increased 'total lung capacity' in Nrf2^{-/-} mice

Conclusion (III)

Compared to CS-exposed Nrf2^{+/+} mice, Nrf2^{-/-} mice show a slightly enhanced pathological phenotype

On the phenotype level:

- Body weight gain in CS-exposed Nrf2^{-/-} mice is significantly attenuated
- Only marginal differences are observed for histopathological parameters (except 'median cord length') between the two genotypes
- Analysis of BAL fluid (free lung cells, chemokines, and cytokines) revealed no significant differences between CS-exposed Nrf2^{+/+} and Nrf2^{-/-} mice
- Lung function parameters ('compliance', 'total lung capacity', 'FEV₂₀/FVC) are rather more compromised by CS exposure in Nrf2^{-/-} than in Nrf2^{+/+} mice

Final remarks

The Nrf2 pathway has been proven a major target of CS exposure *in vitro* and *in vivo*!

- <u>However</u>, in comparison to literature data (*i.e.*, Rangasamy *et al.* 2004), the current study has revealed a less pronounced emphysematous phenotype in the context of CS exposure, *e.g.*, regarding oxidative stress, morphometric, and inflammatory parameters. This may be explained by the fact that the Rangasamy *et al.* study used:
 - a CS mainstream/sidestream mix, which is far more irritating than mainstream smoke only
 - a longer exposure period

Final remarks

Alternatively, it may be explained by the emerging role of Nrf2 as a second line defense tool acting behind / on top of the GSH/GR – Trx/TrxR barrier analogous to the concept suggested by Suzuki *et al.* (2008):

Thomas Müller and Jutta Schüller Sendai, February 2009

Acknowledgement

- Philip Morris Research Laboratories:
 - Cologne, Germany
 - S. Gebel
 - A. Hengstermann
 - C. Knörr-Wittmann
 - J. Schüller

Leuven, Belgium H. Xu

- M. Yamamoto
- K. Taguchi
 Tohoku University,
 Seiryo-cho, Aoba-ku,
 Sendai, Japan
 - J. Alam Alton Ochsner Clinic Foundation, New Orleans, USA

