Computational modeling of pore-scale fluid transport in realistic porous media

DAVID J. LOPEZ PENHA^{*}, BERNARD J. GEURTS^{*}, STEFFEN STOLZ^{†,*} & MARKUS NORDLUND[†]

*Dept. of Applied Mathematics University of Twente, Enschede The Netherlands [†]Philip Morris International R&D Philip Morris Products S.A., Neuchâtel Switzerland

TransPore 2010, Villigen, Switzerland August 19–20, 2010

Porous media: Filter application

Source: http://gubbins.ncsu.edu/research.html

- Porous media may have complicated pore geometries
- Difficult to build practicable body-fitted grids

D.J. Lopez Penha et al.

Porous media: Filter application

Source: http://gubbins.ncsu.edu/research.html

- Porous media may have complicated pore geometries
- Difficult to build practicable body-fitted grids

D.J. Lopez Penha et al.

- 1. Develop "gridding-free" method for computing fluid transport in porous media
- 2. Method allows arbitrary pore geometries

- 1. Develop "gridding-free" method for computing fluid transport in porous media
- 2. Method allows arbitrary pore geometries

Modeling fluid transport in porous media

Application to realistic porous medium

Conclusions & outlook

D.J. Lopez Penha et al.

Modeling fluid transport in porous media

Validation

3 Application to realistic porous medium

Representing complex geometries

- Cartesian grid representation of fluid & solid domains
- Trade-off: High spatial resolutions efficient numerical algorithms

D.J. Lopez Penha et al.

Representing complex geometries

- Cartesian grid representation of fluid & solid domains
- Trade-off: High spatial resolutions efficient numerical algorithms

D.J. Lopez Penha et al.

Fluid dynamics

Incompressible Navier-Stokes equations for fluid & solid domains:

$$abla \cdot \mathbf{u} = 0, \qquad \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{\mathsf{Re}} \nabla^2 \mathbf{u} + \mathbf{f}$$

- Methodology: Immersed boundary method
- Force f: Approximates no-slip condition (volume-penalization)

$$\mathbf{f} = -\frac{1}{\epsilon} \Gamma(\mathbf{x}) \cdot \mathbf{u}, \qquad \epsilon \ll 1$$

• $\Gamma(\mathbf{x})$: Phase-indicator function ($\Gamma = 1$ in solid; $\Gamma = 0$ in fluid)

UNIVERSITY OF TWENTE.

Fluid dynamics

Incompressible Navier-Stokes equations for fluid & solid domains:

$$abla \cdot \mathbf{u} = 0, \qquad \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{\mathsf{Re}} \nabla^2 \mathbf{u} + \mathbf{f}$$

- Methodology: Immersed boundary method
- Force f: Approximates no-slip condition (volume-penalization)

$$\mathbf{f} = -\frac{1}{\epsilon} \Gamma(\mathbf{x}) \cdot \mathbf{u}, \qquad \epsilon \ll 1$$

• $\Gamma(\mathbf{x})$: Phase-indicator function ($\Gamma = 1$ in solid; $\Gamma = 0$ in fluid)

UNIVERSITY OF TWENTE.

- Energy-preserving finite-volume method¹
- Staggered grid (Cartesian & uniformly spaced)
- Implicit time-integration of force ${\bf f}$

¹R.W.C.P. Verstappen and A.E.P. Veldman, J. Comput. Phys., 187 (2003)

2 Validation

3 Application to realistic porous medium

Plane-Poiseuille flow

• $n_y = \{8, 16, \dots, 256\}, \ \ell^p$ -norm of error $(p = \{2, \infty\})$

- (())-marker p = 2; (())-marker $p = \infty$
- Velocity: Converges with order 1
- Similar behavior with Poiseuille flow in tube

D.J. Lopez Penha et al.

Plane-Poiseuille flow

• $n_y = \{8, 16, \dots, 256\}, \ell^p$ -norm of error $(p = \{2, \infty\})$

- (())-marker p = 2; (())-marker $p = \infty$
- Velocity: Converges with order 1
- Similar behavior with Poiseuille flow in tube

UNIVERSITY OF TWENTE.

Porous medium: Inline arrangement of squares

• Porosity: $\phi = 0.75 \Longrightarrow 25\%$ solid grid cells

• Literature: A. Nakayama et al., J. Heat Transfer, 124 (2002)

UNIVERSITY OF TWENTE.

Porous medium: Inline arrangement of squares

• Gradient average pressure $-\partial \langle p \rangle^f / \partial x$ vs. grid resolution:

$(\mathit{n_x} imes \mathit{n_y})ig angle$ Re	10	100	600
32×32	6.65	0.711	0.124
64 imes 64	7.16	0.768	0.135
128 imes 128	7.45	0.800	0.143
181 imes181 (Nakayama et al.)	7.82	0.835	0.154

Modeling fluid transport in porous media

Validation

3 Application to realistic porous medium

- Porous medium: Primarily unidirectional fibrous material
- Geometric data: High-resolution 2D μ CT-scans

Goal:

- Reconstruct from 2D-scans a 3D digitized porous block
- Simulate velocity & pressure fields, extract quantities of interest: u_{max}, macroscopic pressure gradient, permeability

- Porous medium: Primarily unidirectional fibrous material
- Geometric data: High-resolution 2D μ CT-scans

Goal:

- Reconstruct from 2D-scans a 3D digitized porous block
- Simulate velocity & pressure fields, extract quantities of interest: u_{max}, macroscopic pressure gradient, permeability

Source data: 2D μ CT-scans

• Data: 8-bit, gray-scale images [resolution = $(512)^2$ pixels]

D.J. Lopez Penha et al.

Map to black & white

- Black = Solid domain, $\Gamma(\mathbf{x}) = 1$
- White = Fluid domain, $\Gamma(\mathbf{x}) = 0$

UNIVERSITY OF TWENTE.

Noise reduction

- Spatial filter: Uniform weights, filter width = 7 pixels
- Unavoidable smoothing of solid edges

UNIVERSITY OF TWENTE.

Cartesian grid representation

- Left: Processed (high-resolution) μ CT-image
- Right: Cartesian grid representation using $\Gamma(\mathbf{x})$ [grid = $(32)^2$]

UNIVERSITY OF TWENTE.

Cartesian grid representation

- Left: Processed (high-resolution) μ CT-image
- Right: Cartesian grid representation using $\Gamma(\mathbf{x})$ [grid = $(64)^2$]

UNIVERSITY OF TWENTE.

Cartesian grid representation

- Left: Processed (high-resolution) μ CT-image
- Right: Cartesian grid representation using $\Gamma(\mathbf{x})$ [grid = $(128)^2$]

UNIVERSITY OF TWENTE.

3D representation & velocity field

• Scalar system properties vs. grid resolution (at Re = 1):

	ϕ	$u_{ m max}/ \langle {f u} angle $	$-\partial \langle p \rangle^f / \partial x = 1/k_x$
$(32)^3$	0.4077	14.2290	5.326E+03
(64) ³	0.4131	20.1634	7.961E+03
$(128)^3$	0.4131	23.1023	9.862E+03

Numerical results: Planar velocity convergence

- Out-of-plane velocity component
- Left: Grid resolution = $(64)^2$, Right: Grid resolution = $(128)^2$

UNIVERSITY OF TWENTE.

Numerical results: Pointwise velocity convergence

• Streamwise velocity vs. grid resolution (x = y = 0.5, Re = 1)

UNIVERSITY OF TWENTE.

Modeling fluid transport in porous media

Validation

Application to realistic porous medium

4 Conclusions & outlook

D.J. Lopez Penha et al.

Conclusions:

- Immersed boundary method can include arbitrarily shaped solid objects
- Immersed boundary method can readily describe qualitatively laminar fluid dynamics
- Quantitatively accurate results require high spatial resolutions

Outlook:

- Improve order of convergence of immersed boundary method
- Extend method to incorporate heat & mass transfer

Conclusions:

- Immersed boundary method can include arbitrarily shaped solid objects
- Immersed boundary method can readily describe qualitatively laminar fluid dynamics
- Quantitatively accurate results require high spatial resolutions

Outlook:

- Improve order of convergence of immersed boundary method
- Extend method to incorporate heat & mass transfer