

An improved nose-only flow-past chamber for chronic inhalation exposure of rats

David Ghosh Philip Morris Research Laboratories, GmbH Cologne, Germany

International Aerosol Conference Helsinki, Finland 3 September 2010

Motivation

- For a chronic aerosol inhalation study of room-aged cigarette sidestream smoke (RASS) and diesel engine exhaust (DEE), nose-only exposure chambers that enable the simultaneous exposure of 5 groups of approx. 200 rats each were required.¹
 - The nose-only exposure mode was preferred, because it prevents deposition of aerosol particles on skin and fur, thereby minimizing the uptake of aerosol particles by grooming.^{2,3}
 - Re-breathing of exhaled test aerosol was to be kept to a minimum.
 - Limited laboratory floor space was available, so, none of the commercially available nose-only flow-past chambers were suitable.^{4,5}
- 1. Stinn W, Teredesai A, Anskeit E, Rustemeier K, Schepers G, Schnell P, Haussmann H-J, Carchman RA, Coggins CRE, Reininghaus W, 2005. *Inhal. Toxicol.* **17**(11): 549-76.
- 2. Mauderly JL, Bechtold WE, Bond JA, Brooks AL, Chen BT, Cuddihy RG, Harkema JR, Henderson RF, Johnson NF, Rithidech K, Thomassen DG. 1989. *Exp. Pathol.* **37**: 194-197.
- 3. Haussmann HJ., Gerstenberg B, Göcke W, Kuhl P, Schepers G, Stabbert R, Stinn W, Teredesai A, Tewes F, Anskeit E, Terpstra P. *J. Inhal. Toxicol.* **10**(7): 663 697(1998).
- 4. Cannon WC, Blanton EF, McDonald KE. 1983. Am. Ind. Hyg. Assoc. J. 44(12): 923-928.
- 5. Pauluhn J. 1994. J. Appl. Toxicol. 14(1): 55-62.

Cannon *et al.*¹ improves the standard nose-only exposure chamber

Standard nose-only chamber

- 40 ports available (5 reserved for sampling; 35 used for rat exposure).
- Decreased effect of non-uniform distribution of aerosol concentration.
- 1. Cannon WC, Blanton EF, McDonald KE. 1983. Am. Ind. Hyg. Assoc. J. 44(12): 923-928.

Pauluhn *et al.*¹ further improves the nose-only exposure chamber

• Uniform spatial exposure of aerosol.

1. Pauluhn J. 1994. J. Appl. Toxicol. 14(1): 55-62.

The PMI nose-only flow past chamber

- Uniform spatial exposure of aerosol.
- Increased number of ports: 200.
- Minimal re-breathing of exhaled air.
- Minimal irritation.

Aerosol loss and uniform distribution within the PMI noseonly flow past chamber

Parameter	Unit	RASS		DEE	
		Low dose	High dose	Low dose	High dose
TPM concentration	mg/m ³	3	10	3	10
Aerosol distribution	RSD (%)	5.0	2.4	4.0	2.0
TPM loss	0/0	2.9	1.2	2.6	0.2

TPM = total particulate matter

Particle size distribution of test aerosol within the PMI nose-only flow past chamber

The PMI nose-only flow-past chamber

- Uniform and consistent spatial aerosol distribution within the exposure chamber
 - ⇒ aerosols undergo no significant changes in particle size distribution on their way through the exposure chamber
- Flow direction of the aerosol in the breathing zone passes the nose of the rat at 90° to the flow direction of the exhaled air
 - ⇒ minimizes re-breathing of exhaled air
- Aerosol velocity in the breathing zone of the rat at a flow rate of 1 l/min through each holding tube is only 0.1 m/s
 - ⇒ protects the rats from irritative effects
- Increased number of exposure ports: 200
 - ⇒ more efficient use of laboratory floor space

Acknowledgement

Co-authors:

- Peter Schnell
- Bernd van Ooy
- Johannes Doll
- Walter Stinn
- Falk Radtke

