TIME- AND CONCENTRATION-DEPENDENT EFFECTS OF CIGARETTE SMOKE ON MONOCYTIC CELL TRANSCRIPTOME

<u>C Poussin¹</u>, M Lietz², W Schlage², S Lebrun¹, M Peitsch¹ and J Hoeng¹

¹Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland ²Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Cologne, Germany

Introduction

Atherosclerosis is a chronic inflammatory process characterized by a series of biological processes resulting in plaque formation in the vascular wall. Atherosclerotic plaques develop slowly over time, progressing from fatty streaks to complicated lesions, which can lead to life-threatening clinical events such as myocardial infarction and stroke. Numerous studies indicate that the monocyte/macrophage might be an important key player in the initiation and progression of plaque formation [1]. It has been shown that exposure to cigarette smoke condensate increases the adhesion of monocytes to endothelial cells *in vitro*, a critical step in the initiation of atherosclerosis [2].

The purpose of this study was to investigate the transcriptional response of monocytic cells exposed to

Results								
Α					C			
Name		P-values	Adjusted	Number	$\begin{array}{ccc} \mbox{Probeset ID} & \mbox{Gene symbol} & \beta_i & \mbox{F} \end{array}$	-DR		
Tanna			P-values	of genes	NRF2-mediated oxidative stress response	/		
Oxidativ	re Stress Reponse Mediated by Nrf?	9 0F-04		12	Unfolded protein response / ER stress			
VDR/RXR Activation		5.0E-0 4 1.7E-03		7	202072_5at ATF3 0.45 4.0 155/080 a at ATF3 0.33 6			
Hormone Receptor Regulated Cholesterol Metabolism		1.3E-02		2	200779 at ATF4 0.33 0.33	7E-(
p53 Signaling		1.4E-02		6	204194 at BACH1 0.14 2.4	9E-		
Anti-Apoptosis		3.2E-02		3	212501 at CEBPB 0.09 1.	1E-		
	•				200880 at DNAJA1 0.10 2.	7E-		
Top KE	GG pathways in DAVID				225061 at DNAJA4 0.14 3.4	6E-		
p53 Sigi	naling	2.4E-03	2.1E-01	7	200664 s at DNAJB1 0.25 4.4	6E-		
Prostate	e cancer	9.0E-03	3.6E-01	7	200666 s at DNAJB1 0.22 1.0	6E-		
					203811_s_at DNAJB4 0.21 8.0	6E-		
B					202842_s_at DNAJB9 0.17 5.5	8E-		
	Ton Diclosical function clusters in DAV/D	Ē	Enrichmen ⁻	t	200064_at HSP90AB1 0.05 8.1	1E-		
	Top Biological function clusters in DAVID		score		214359_s_at HSP90AB1 0.06 9.8	8E		
	Lumen		12.4		210189_at HSPA1L 0.21 3.0	6E		
	Stress Response (UPR)		8.2		117_at HSPA6 0.59 2.4	5E		
	Basic-leucine zipper (bZIP) transcription fact	or factor	6.0		200806_s_at HSPD1 0.06 9.0	6E		
	Transcription regulation (nucleus)		5.4		205133_s_at HSPE1 0.06 4.4	4E		
	Nucleolus		4.7		36711_at MAFF 0.42 6.7	7E		
	Transcription (repressor activity)		3.8		226206_at MAFK 0.12 7.4	4E		
	Chaperone / Heat shock protein		2.8		201146_at NFE2L2 (NRF2) 0.09 2.2	2E		
	Apoptosis		2.4		37028_at PPP1R15A 0.37 3.3	3E		
					202014_at PPP1R15A 0.37 4.9	9E		
E- Nrf2-mediated oxidative stress response			PA)		209685_s_at PRKCB 0.05 7.4	5E		
		×.			218145_at TRIB3 0.22 6.3	3E		
					1555788_a_at TRIB3 0.34 5.3	3E		
					200670_at XBP1 0.07 9.9	9E		
	Oxidative stress PO	sitive intera	action		nE2 Signaling			
					$\begin{array}{c} p = 3 \text{ Signalling} \\ 214710 \text{ of } CONP1 \\ 0.00 1 \end{array}$	1 -		
Cytoplas	sm				$214710_{S}al$ CCND1 -0.09 1.	コロ		
					215525_{al} CONET -0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0			
					203034_a CONE2 -0.10 1.			
	Electophiles				202281 s at CDKN14 (n21) 0.15 1.			
Ras	A A A A A A A A A A A A A A A A A A A				202204_5_at CDRNTA (p21) 0.13 4.4 203725 at CADD/5A 0.13 7			
A, P					200725_a $CADD+3A = 0.13 7.0$ 204285 s at PMAIP1 = 0.12 4	5E		
c-Raf_					223195 s at SESN2 0.37 3			
A, P	A, P, PP A, P A, P A, P A, P, P A, P, PP A, P, PP A, P, PP	D			223196 s at SESN2 0.57 5.	6E		
MEK1/2	MEK5* MKK4/7 MKK3/6 AKT							
A, P	A, PP A, A, P, PP A, P, P, PP A, P,			NFE2L2	DNAJB1			
ERK1/2	ERK5 JNK1/2 P38 MAPK PERK GSK3P		•		4 -	•		
	A,P A A A,P P	j2)	°.			:		
		(loć	N L))			
	(KEAP1)	sion	- ⁻	• * * × ·				
		less	4	•	i i i i i i i i i i i i i i i i i i i	-		
	REAP1 PP	Exp	φ [.] –					
	Actin		9		• • • • • • • • • • • • • • • • • • •			
	NRE2 HERE NRE2		° −	<u> </u>	¹			

Keywords

Mono Mac 6 cells (MM6): Human monocytic cell line with several features of mature blood monocytes; e.g. CD14 antigen expression, phagocytotic ability, and functional ability to produce cytokines. These cells are often used as an *in vitro* model to demonstrate the actions of monocytes.

Atherosclerosis: A progressive vascular disease characterized by accumulation of cholesterol in the intima of large arteries. The primary drivers affecting rates of atherosclerotic plaque progression include enhanced cholesterol influx to the vessel wall and accumulation and retention of lipid in the intima due to local and systemic inflammation.

Methods

A- Preparation of smoke-bubbled (sb) PBS

A- Microarray Data Analysis

Raw data (CEL files)

Normalization: gcrma, bioconductor [3]

Statistical analysis: linear model (limma)

Expression ~ $\beta_0 + \beta_t$. Time + β_d . concentration +

 β_i . Time*concentration

Signif: T*D

Time

Ingenuity Pathway Analysis (IPA) software [4]

ssion

B- Functional analysis

• DAVID database system [5]

B- In Vitro assay with MM6 cells

Figure 2. Transcriptomic data analysis. The data analysis (A) was conducted to identify genes the

Figure 3. Functional analysis of the differentially expressed gene list. The statistical analysis identified 502 probe sets (~428 genes) with a significant interaction (FDR \leq 0.01) between the time and concentration variables. Functional analyses were generated through the use of IPA and DAVID (Database for Annotation, Visualization, and Integrated Discovery). Top canonical pathways are displayed in table A. In IPA, Fisher's exact test was used to calculate a p-value determining the probability that the association between the genes in the dataset and the canonical pathway is explained by chance alone. In DAVID, the EASE score ("P-values") corresponds to a modified Fisher Exact Pvalue (more conservative). A multiple hypothesis testing correction procedure was applied to adjust pvalues using the Benjamini-Hochberg method. The functional annotation clustering approach implemented in DAVID allowed to identify top biological function clusters listed in table B. The group enrichment score corresponds to the geometric mean (in -log scale) of member (annotation terms inside each cluster for which the p-value is calculated as previously described)'s p-value in a corresponding cluster. Table C contains genes significantly regulated by CS and over-represented in some biological functions/pathways. Examples of the expression profile over concentration and time of some of these genes are shown in D and mapping of significantly regulated genes in Nrf2-mediated oxidative stress response pathway is displayed in E. It is important to note that these results assume the actions of the vapor components soluble in the PBS, and excludes the effects of particulate phase.

Figure 1. Description of the overall experiment. Human Mono Mac 6 cells were treated with different concentrations (0, 0.045 and 0.09 puff/ml) of CS that had been bubbled through phosphate buffered saline (PBS) or with control PBS (A) for 30, 60, and 120 minutes (B). At each time point, cells were harvested and RNA from different samples was extracted for further transcriptomic analysis using the Human Genome U133 Plus 2.0 Affymetrix® gene expression platform (C). The different blue colors represent 3 independent replications of the same experiment. In total, 27 arrays were performed. expression of which is significantly regulated in a time- and concentration-dependent manner by CS. During the statistical analysis step, a linear model was defined and applied on gcrma (GC-Robust Multiarray Averaging)- normalized gene expression matrix using the limma package from the bioconductor [3,6]. Probe sets with a false discovery rate (FDR; Benjamini Hochberg method) \leq 0.01 associated to the β_i coefficient (unit: minute.puff.mL⁻¹; interaction) were selected as significantly time- and concentration-dependent regulated genes as shown in the above figure example. A canonical pathway/ biological function over-representation analysis (B) of the list of genes modulated by CS was conducted using public and commercial softwares to provide a biological interpretation of CS effect on MM6 cells.

Conclusions

Overall, the results demonstrate a comprehensive picture of the cigarette smoke-specific transcriptional gene expression regulation, particularly stress-response pathways - when focusing on those changes in cigarette smoke-exposed human monocytes that are time- and concentration-related. This approach will enhance the ability to further investigate the complex gene expression changes in monocytes underlying the biological responses that may be involved in the development of atherosclerosis.

References

2.

3.

4.

5.

6.

Pamukcu B et al, BMC Genomics 2010; 42(6):394 Kalra VK et al., I Cell Physiol 1994: 160(1):156
Bioconductor website: http://www.bioconductor.org
Ingenuity® Systems, http://www.ingenuity.com Huang DW et al. Nature Protocol 2009, 4(1):44
Smyth GK et al, Using R and Bioconductor (book, Springer); 397-420

Philip Morris International Research & Development, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland T: +41 58 242 21 11, F: +41 58 242 28 11, W: www.philipmorrisinternational.com