Cigarette Smoke Enhances Foam Cell Formation Independent of Scavenger Receptor Gene Expression

Stolle K1, Steffen Y1, Lebrun S2

¹Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Cologne, Germany; ²Philip Morris International R&D, Philip Morris Products S. A., Neuchâtel, Switzerland

Background and Objective

Epidemiologic research has shown a correlation between cigarette smoking and risk of atherosclerosis¹. The uptake of modified low density lipoprotein (LDL) is a hallmark of atherosclerotic plaque formation. The modified LDL binds to scavenger receptors, is internalized and leads to foam cell formation, a process considered as a key step in the progression of cigarette-smoke-related atherosclerosis.

In this study, we investigated the impact of cigarette smoke on foam cell formation in macrophages and the underlying mechanisms.

Materials and Methods

Monocytes of the human acute monocytic leukemia cell line THP-1 were differentiated to macrophages by phorbol myristate acetate and were treated with mainstream smoke total particulate matter (TPM) from the Reference Cigarette 3R4F (University of Kentucky) for up to 42 hours. The cells were subsequently treated for 4 hours with fluorescence-labelled acetylated LDL (acLDL) for quantification of foam cell formation or with acetvlated LDL for RNA analysis. Ouality check of foam cell formation was performed by confocal microscopy (data not shown).

For quantitative PCR, TaqMan® Assays (Applied Biosystems) were used. Microarray analysis was performed on Mouse Genome 430 2.0 Arrays (Affymetrix). The quality of all arrays was assessed using the affyOCReport package. Differential gene expression was derived from the GC-RMA background-corrected and normalized signal intensities by averaging biological replicates employing the Bioconductor package. Pathway analysis was performed with IPA5 Ingenuity© software.

Results: Uptake of Acetvlated LDL

Uptake of fluorescent-labelled acetylated LDL after 42h: Examples

Quantification of fluorescent-labelled acetylated LDL in response to TPM THP-1_{diff} 18h TPM THP-1_{diff} - 42h TPM

Neg.co.: Cells without acLDL or TPM Shown are median (line), 1st and 3rd quartiles (box) and minimum and maximum values (whiskers)

Blue: Nuclei

nucleus

Green: ALEXA®-acLDL

Blue line: Border of nuclei

Red Area: ALEXA®-acLDL intensity

Red Line: Area for quantification p

Results: Gene Expression and Pathway Analysis

Gene expression of scavenger receptors in response to TPM

Summary

Foam cell formation of THP-1 macrophages is enhanced dose-dependently by treatment with mainstream smoke total particulate matter (TPM), independent of differential gene expression of scavenger receptors. This was shown by:

- The uptake of fluorescence-labelled LDL in THP-1 macrophages treated with TPM was enhanced dose-dependently.
- Exposure to TPM did not affect the gene expression of scavenger receptors.
- · Genes involved in oxidative stress, NFkB signaling and other pathways are affected by TPM.

Conclusion

Scavenger receptors are reported to be involved in foam cell formation. Our results show that no newly synthesized scavenger receptors are required for the acceleration of foam cell formation by TPM. However, the mode of action remains to be elucidated, i.e., whether a facilitated internalization of scavenger receptors or other pathways are involved.

neg. co. 0 5 10 25 50 75