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Background
• Detailed description and simulation of droplet dynamics ina porous medium

• Quantify sensitivity of droplet behavior to the flow conditions, particle size and the complexity of the
inner structure of the porous medium

• Application: estimation of removal efficiency of various porous filters

Modeling droplet motion in a gas flow
• Governing equations for thegas phase (Eulerian approach):

∇ · u = 0 (1a)
∂u

∂t
+ u · ∇u = −

1

ρf

∇p + ν∇2
u + f . (1b)

where

* u fluid velocity

* p pressure

* ρf fluid mass density

* ν kinematic viscosity

* f body force representing solid porous medium

• Governing equations for theparticle phase (Lagrangian tracking):

dx
dt

= v (t) (2a)

dv
dt

=
1

τ
(u(x, t) − v(t)) (2b)

where

* x particle position

* v particle velocity

* τ Stokes relaxation time

Numerical treatment
• Gas phase:skew-symmetric finite volume discretization method

• Porous media:immersed boundary (IB) method with volume penalization forcing

• Particle phase:first order time integration, trilinear interpolation of fluid velocity at particle position

• Filtration: particle is filtrated if its trajectory crosses the solid surface

Particle filtration in structured porous media
• Model porous medium: composed of periodic arrangements of staggered square rods in 3D. The solid

part occupies 1/4 of a representative elementary volume.
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• Shown are in-plane velocity vectors of simulated flow through model porous medium corresponding to
Reynolds numberRe = 100, resolution of(128 × 64 × 4) in (x, y, z) direction
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• Particle trajectories emanating from a line of initial positions atx = 0 for different Reynolds numbers:
(a) τ = 0.05, Re = 10 and (b)τ = 0.05, Re = 100 (unfiltered particles are denoted by(∗) and particles
that hit an object by(◦)). Each curve corresponds to a particular point of time.
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• Decay of the fraction of unfiltered aerosol droplets with time at different Stokes numbers andRe = 100:
τ = 0 (*), τ = 0.05 (- -), τ = 0.1 (⊲), τ = 0.5 (◦) andτ = 1 (-)
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Concluding remarks
• Euler-Lagrange approach provides detailed microscopic information about the behavior of droplets in-

side the porous medium

• For considered Reynolds number an increase in the droplet inertia implies an increase in the filtration
efficiency

• The decay of unfiltered particles follows an exponential trend

Outlook
• Further development of the algorithm to avoid numerical filtration atτ = 0

• Include Brownian diffusion effect for low Stokes numbers

• Parameter study for filtration efficiency of realistic filters


