Modeling heat and fluid flow in porous media

David J. Lopez Penha^{*}, Lilya Ghazaryan^{*}, Bernard J. Geurts^{*}, Steffen Stolz^{†,*} & Markus Nordlund[†]

*Dept. of Applied Mathematics University of Twente, Enschede The Netherlands [†]Philip Morris International R&D Philip Morris Products S.A., Neuchâtel Switzerland

ECCOMAS CFD 2010, Lisbon, Portugal June 14–17, 2010

Porous media

Amorphous nano-porous material

Source: http://gubbins.ncsu.edu/research.html

- Porous media may have complicated pore geometries
- Difficult to build practicable body-fitted grids

D.J. Lopez Penha et al.

- 1. Develop "gridding-free" method for computing heat & fluid flow in porous media
- 2. Method allows arbitrary pore geometries

- 1. Develop "gridding-free" method for computing heat & fluid flow in porous media
- 2. Method allows arbitrary pore geometries

Modeling fluid flow in porous media

2 Modeling heat flow in porous media

3 Validation tests

Application to realistic porous medium

Outline

1 Modeling fluid flow in porous media

- 2 Modeling heat flow in porous media
- **3** Validation tests
- Application to realistic porous medium

5 Conclusions

Representing complex geometries

- Cartesian grid representation of fluid & solid domains
- Trade-off: large spatial resolutions efficient numerical algorithms

D.J. Lopez Penha et al.

Representing complex geometries

- Cartesian grid representation of fluid & solid domains
- Trade-off: large spatial resolutions efficient numerical algorithms

D.J. Lopez Penha et al.

Fluid dynamics

Incompressible Navier-Stokes equations for fluid & solid domains:

$$abla \cdot \mathbf{u} = 0, \qquad \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{\operatorname{Re}} \nabla^2 \mathbf{u} + \mathbf{f}$$

- Methodology: immersed boundary method
- Force f: approximates no-slip condition (volume-penalization)

$$\mathbf{f} = -\frac{1}{\epsilon} \Gamma(\mathbf{x}) \cdot \mathbf{u}, \qquad \epsilon \ll 1$$

• $\Gamma(\mathbf{x})$: phase-indicator function ($\Gamma = 1$ in solid; $\Gamma = 0$ in fluid)

UNIVERSITY OF TWENTE.

Fluid dynamics

Incompressible Navier-Stokes equations for fluid & solid domains:

$$abla \cdot \mathbf{u} = 0, \qquad rac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot
abla \mathbf{u} = -
abla p + rac{1}{\mathsf{Re}}
abla^2 \mathbf{u} + \mathbf{f}$$

- Methodology: immersed boundary method
- Force f: approximates no-slip condition (volume-penalization)

$$\mathbf{f} = -rac{1}{\epsilon} \Gamma(\mathbf{x}) \cdot \mathbf{u}, \qquad \epsilon \ll 1$$

• $\Gamma(\mathbf{x})$: phase-indicator function ($\Gamma = 1$ in solid; $\Gamma = 0$ in fluid)

UNIVERSITY OF TWENTE.

- Symmetry-preserving finite-volume method
- Staggered grid (uniform Cartesian)
- $\bullet\,$ Implicit time-integration of force f

Modeling fluid flow in porous media

2 Modeling heat flow in porous media

3 Validation tests

Application to realistic porous medium

5 Conclusions

UNIVERSITY OF TWENTE.

Conjugate heat transfer

• Single temperature equation for fluid & solid domains:

$$\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \frac{1}{\operatorname{\mathsf{Re}}\operatorname{\mathsf{Pr}}} \nabla \cdot (\alpha \nabla T)$$

• Thermal diffusivity α : discontinuous if $\alpha_f \neq \alpha_s$

$$\alpha(\mathbf{x}) = (1 - \Gamma)\alpha_f + \Gamma\alpha_s$$

• Solid domains: convective term vanishes \implies diffusion only

UNIVERSITY OF TWENTE.

Conjugate heat transfer

• Single temperature equation for fluid & solid domains:

$$\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \frac{1}{\operatorname{\mathsf{Re}}\operatorname{\mathsf{Pr}}} \nabla \cdot (\alpha \nabla T)$$

• Thermal diffusivity α : discontinuous if $\alpha_f \neq \alpha_s$

$$\alpha(\mathbf{x}) = (1 - \Gamma)\alpha_f + \Gamma\alpha_s$$

• Solid domains: convective term vanishes \implies diffusion only

UNIVERSITY OF TWENTE.

- Physics: heat flux α∇T continuous ⇒ ∇T discontinuous at jumps in α ⇒ special care discretizing ∇T on jump interfaces
- Auxiliary temperatures { T^x_{i,i}, T^y_{i,j}} on cell surfaces:

$$T_{ij}^{x} = \frac{\alpha_{ij}T_{ij} + \alpha_{i+1j}T_{i+1j}}{\alpha_{ij} + \alpha_{i+1j}}$$
$$T_{ij}^{y} = \frac{\alpha_{ij}T_{ij} + \alpha_{ij+1}T_{ij+1}}{\alpha_{ij} + \alpha_{ij+1}}$$

- Physics: heat flux α∇T continuous ⇒ ∇T discontinuous at jumps in α ⇒ special care discretizing ∇T on jump interfaces
- Auxiliary temperatures $\{T_{i,j}^x, T_{i,j}^y\}$ on cell surfaces:

$$T_{i,j}^{x} = \frac{\alpha_{i,j}T_{i,j} + \alpha_{i+1,j}T_{i+1,j}}{\alpha_{i,j} + \alpha_{i+1,j}}$$
$$T_{i,j}^{y} = \frac{\alpha_{i,j}T_{i,j} + \alpha_{i,j+1}T_{i,j+1}}{\alpha_{i,j} + \alpha_{i,j+1}}$$

- Physics: heat flux α∇T continuous ⇒ ∇T discontinuous at jumps in α ⇒ special care discretizing ∇T on jump interfaces
- Auxiliary temperatures $\{T_{i,i}^x, T_{i,j}^y\}$ on cell surfaces:

$$T_{i,j}^{x} = \frac{\alpha_{i,j}T_{i,j} + \alpha_{i+1,j}T_{i+1,j}}{\alpha_{i,j} + \alpha_{i+1,j}}$$
$$T_{i,j}^{y} = \frac{\alpha_{i,j}T_{i,j} + \alpha_{i,j+1}T_{i,j+1}}{\alpha_{i,j} + \alpha_{i,j+1}}$$

- Physics: heat flux α∇T continuous ⇒ ∇T discontinuous at jumps in α ⇒ special care discretizing ∇T on jump interfaces
- Auxiliary temperatures $\{T_{i,j}^x, T_{i,j}^y\}$ on cell surfaces:

D.J. Lopez Penha et al.

3 Validation tests

5 Conclusions

UNIVERSITY OF TWENTE.

Plane-Poisuielle flow with isothermal walls

- ℓ^{p} -norm of error in velocity & temperature ($p = \{2, \infty\}$)
- Velocity: first-order in ℓ^∞
- Temperature: second-order in ℓ^∞

Porous medium: inline arrangement of squares

- Porosity: $\phi = 0.75 \Longrightarrow 25\%$ solid grid cells
- Literature: Nakayama et al., J. Heat Transfer, 124, 746–753 (2002)

UNIVERSITY OF TWENTE.

• Gradient average pressure $\partial \langle p \rangle^f / \partial x$ vs. grid resolution:

$(\mathit{n_x} imes \mathit{n_y})ig angle$ Re	10	100	600
32×32	6.65	0.711	0.124
64 imes 64	7.16	0.768	0.135
128 imes 128	7.45	0.800	0.143
181 imes181 (Nakayama et al.)	7.82	0.835	0.154

2 Modeling heat flow in porous media

3 Validation tests

Application to realistic porous medium

UNIVERSITY OF TWENTE.

5 Conclusions

Realistic porous medium

- Left: solid data from μ CT-imaging (black: solid material)
- Right: Cartesian grid representation using $\Gamma(\mathbf{x})$ [grid: $(32)^2$]

D.J. Lopez Penha et al.

Realistic porous medium

- Left: solid data from μ CT-imaging (black: solid material)
- Right: Cartesian grid representation using $\Gamma(\mathbf{x})$ [grid: $(64)^2$]

UNIVERSITY OF TWENTE.

Realistic porous medium

- Left: solid data from μ CT-imaging (black: solid material)
- Right: Cartesian grid representation using $\Gamma(\mathbf{x})$ [grid: $(128)^2$]

UNIVERSITY OF TWENTE.

Simulated field variables

- Left: contours out-of-plane velocity [grid: (256)²]
- Right: fluid-solid temperature [grid: (256)²]

D.J. Lopez Penha et al.

2 Modeling heat flow in porous media

3 Validation tests

Application to realistic porous medium

UNIVERSITY OF TWENTE.

Immersed boundary method:

- Reliably capture laminar fluid dynamics with adequate grid resolution
- Include arbitrarily shaped solid objects using Cartesian grid representation
- First-order accurate in fluid dynamics & second-order accurate in heat transfer