

PMI RESEARCH & DEVELOPMENT

### **Modeling Early Initiation Processes In Smoking-Induced Lung Adenocarcinomas**

Vuillaume G<sup>1</sup>, Mueller T<sup>2</sup>, Talikka M<sup>1</sup>, Cheng Y<sup>1</sup>, Diehl S<sup>2</sup>, Han W<sup>1</sup>, Peitsch M<sup>1</sup>, Hoeng J<sup>1</sup>, Tobin F<sup>3</sup>

<sup>1</sup>Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland <sup>2</sup>Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Cologne, Germany <sup>3</sup>Tobin Consulting LLC, Newtown Square, Pennsylvania, US

# Outline

- Background
- Method
- Preliminary Results
- Summary



# **Cigarette Smoking (CS)-Dependent Lung Tumorigenesis Is An Extremely Complex And Poorly Understood Process**

• Smoking induces histological changes...



Model Scope → Focus on Initiation Processes

**Objective** Build a model that helps to better understand the initiation processes of human lung adenocarcinoma due to smoking and to predict the time for appearance of the first neoplasm



Tumor

Growth

### **Method Overview**

• Approach consists in 4 major steps...





# **Describing the Biology (1/4)**



- Description of the main actors & processes of disease initiation
- Formal biological definition of the model concepts (i.e. variables)
- Design driver  $\rightarrow$  Decisions on model granularity
  - Balance details & complexity in resulting model

#### Granularity in ...

- a) ... biological entities
- b) ... processes
- c) ... in time considerations (smoking is daily and adenocarcinoma takes decades to form)

Abstraction & generalization are required

Consequences on data requirements





### **Describing the Biology (2/4)** *First Level of Detail*

- Representation of main tissues and lung properties
- Representation of smoking (including cessation) and demographic influences



# **Describing the Biology (3/4)**

Simple Example of Next Level of Detail

- Addition of pre-field and field tissue main properties and their interactions
- e.g. field growth and all influences on it...





# **Describing the Biology (4/4)**

*Current Model (including healing processes during cessation)* 



# **Building Plausible Kinetics (1/2)**



#### Differential Equations (ODEs)

#### **Neoplastic Tests**

- Describe the quantitative evolution of the model concepts (i.e. the "variables")
- Obtained by a "one-to-one" mapping of the influence diagrams
- Combination of first and second order effects (second order effects are of the type cell count \* rate)

- Conditions for a cell to be considered as neoplastic
- Characteristics are translated into mathematical conditions
- e.g. sustained growth, lack of resistance to tumorigenesis

- Constraints
- Model results have to be biologically realistic
- e.g. maintain pre-field growth homeostasis
- No unacceptable outputs
  must occur
- There are many such constraints which are derived and translated into mathematical terms



# **Building Plausible Kinetics (2/2)**



Example of "one-to-one" mapping...





# **Systems Biology Data Acquisition (1/2)**



- Explicit set of criteria for data inclusion
  - E.g. focus on non-tumorigenic AC relevant tissue, quantitative smoking information, ...
- Experimental data serve as modeling surrogates
  - Diverse sources: genomics, proteomics, clinical data, preclinical data (include scaling to human), ...
  - Biological measurements are quantitatively mapped to a corresponding model concept (e.g. IL-8 = inflammation)



Picture taken from www.TopNews.in



## **Systems Biology Data Acquisition (2/2)**



• Example of data mapping to model concept (sometimes an abstraction)...



Takizawa et al., Am J Physiol Lung Cell Mol Physiol 278: L906–L913, 2000







- Optimization is used to calibrate the model
  - Find one set of parameter values that best fits each and every data set simultaneously
  - "Single, central mechanism results"
  - All the data sets are matched to each model concept simultaneously
- Optimization constraints
  - Only plausible biological results
  - No unacceptable outputs occur
- "Validation" → provides information on where the model works well and where it does not



# Model Calibration (2/2)



$$\min_{\vec{\alpha}} O(\vec{\alpha}) = \sum_{j} \omega_{j} \cdot O(\|\text{Model}_{version}(j,\vec{\alpha}) - \text{data}_{set}(j)\|)$$

• ... under the following plausibility constraints...

$$\vec{g}(\vec{\alpha}) = 0$$
 and  $\vec{h}(\vec{\alpha}) > 0$ 

- ... where O is a metric ("distance") between the model outputs and the data
- ...  $\omega_i$  is a weight assigned to each data set
- ... and *g* and *h* are functions that ensure that biological plausibility is satisfied and that no unacceptable output occurs
  - e.g. pre-field growth homeostasis  $\rightarrow$  Pre-Field Growth (PFG) = Pre-Field Death (PFD)  $\rightarrow$  PFG'(t) = PFD'(t)  $\rightarrow$  constraint on the equation parameters for PFG' and PFD'...

$$\alpha_{PFG_1}LI'(t) - \left\{\alpha_{PFG_1} + \alpha_{PFD_2}\right\}IS'(t) - \left\{\alpha_{PFG_3} + \alpha_{PFD_2}\right\}PFS'(t) = 0$$



Page: 14

# **Preliminary Results**

- Preliminary version of the model
  - Data acquisition is ongoing
  - Parameters were "guesstimates" based on biological experts' opinions and expected behaviors of the system (model is not calibrated yet)
- Smoking scenarios used
  - Caucasian male, continuous smoking from ages 18 to 80 years old
  - Continuous smoking of 0.5, 1, 2, 4 packs/day
- Simulation results are illustrative and based on a non-calibrated model.



### **Preliminary Results**

• Smoke dose accelerates the lung degradation...



# **Summary**

- Modeling approach was presented
  - Conceptual representation of the main biological steps (tradeoff to limit data requirements)
  - Translation of biology into mathematics
  - Data acquisition strategy and surrogacy
  - Optimization strategy to calibrate the model
- Model building and data acquisition are work in progress
- Current challenge: sufficient data of adequate quality...
  - Need data that focuses on initiation events, not on cancer or epidemiology (incidence or mortality)
  - Need data that has fully quantitative smoking-related information
  - e.g. "Smoker", "Ex-smoker" instead of precise quantitative information on duration, dose, cessation period, problematic with pack-years data, ...



Thanks for your attention!





PMI RESEARCH & DEVELOPMENT