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Background

• Porous media are encountered in a wide variety of technologies, e.g., for filtra-
tion, heat transfer, and chemical reaction.

• Large-scale computations are generally performed using transport equations
in terms of mean flow variables.

• These equations contain unknown effective transport properties of the porous
medium which are vital to performing accurate computations.

Objectives

• Develop a computer model for simulating the detailed transport of momen-
tum and energy in a representative sample of the porous medium [1].

• Compute the directional permeability and Nusselt number as functions of the
system properties.

Modeling strategy

• Use periodic unit cell that is representative of the porous medium under con-
sideration.

• Solve the transport equations using periodicity conditions on {u, p, Tf , Ts}:
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with Γ(x) = 1 for x in the solid and Γ(x) = 0 for x in the fluid. For the material
properties: Rcp ≡ cp,s/cp,f and Rλ ≡ λs/λf .

• Process the steady-state solution to obtain effective transport properties (direc-
tion n):
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Structured models of porous media
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Fig. 1. Fully-developed velocity vectors for an inline and a staggered arrangement of square rods

(Re = 100; 〈u〉 = 1).
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Fig. 2. Fields of fully-developed temperature fluctuation over a mean temperature field (Re Pr =

100; Rcp = Rλ → ∞).
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Fig. 3. Permeability (kx) and Nusselt number (Nux) predictions along the x-axis versus the

Reynolds number. (©)-markers represent the staggered arrangement and (×)-markers the inline

arrangement (Pr = 1; Rcp = Rλ → ∞). Red data points represent inline data from Ref. [2].

Realistic 3D porous medium

• Geometry extracted from µCT-imaging (computer tomography).

• Represented on a Cartesian grid using the Γ-function.

Fig. 4. Raw and post-processed (black indicates solid objects; white are interstitial channels)

µCT-image of a single cross section of a porous medium.
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Fig. 5. Contour plot of the simulated out-of-plane velocity component and the solid–fluid tem-

perature field.

Summary & outlook

• Developed computer model for momentum and energy transport.

• Improve accuracy of domain representation for application to realistic porous
media.
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