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Example of realistic porous medium

• Left: Micro-computed-tomography (µCT) −→ gray-scale
images of cross-sections

• Right: Binary color scale & noise reduction (black = solid
matrix; white = fluid channels)



Goals & approximation strategy

Goals:

• Reconstruct 3D porous media from 2D µCT-scans

• Simulate laminar fluid & energy transport (velocity, pressure
& temperature)

• Compute permeability & heat transfer coefficients used in
engineering models
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Numerical approximation strategy:

• Flexible to allow arbitrary pore geometry

• Require non-body conforming grid (“gridding-free” strategy)

• Methodology: Immersed boundary method
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Part I: Pixelated structure of images

• Close-up: Image formed by individual square pixels

• Adopt meshing strategy that mimics pixelated structure



Part I: Cartesian grid representation

• Immerse solid domains into Cartesian grid

• Identify fluid/solid using phase indicator function:

Γ(x) =

{

0, for x in fluid domain (fluid fraction ≥ 50%)

1, for x in solid domain (solid fraction > 50%)



Part I: Transport equations

• Transport equations:

∂u

∂t
+ u · ∇u = −

1

ρ
∇p + ν∇2u+ f

∂T

∂t
+ u · ∇T = ∇ · (α∇T )

• f: Force u → 0 in solid domains by volume penalization

f = −
1

ǫ
Γ(x)u, ǫ ≪ 1

• Methodology: Immersed boundary method

• Thermal diffusivity α: Discontinuous if αf 6= αs

α(x) =
[

1− Γ(x)
]

αf + Γ(x)αs



Part II: Geometrical convergence

(a) µCT-image (b) Represented on 322

(c) Represented on 642 (d) Represented on 1282



Part II: Numerical convergence

(a) Numerical resolution
= geometry resolution

(b) Numerical resolution
= 2 × geometry resolution

• Allows to study numerical convergence independently from
geometrical convergence



Part II: Snapshot velocity & temperature field (2562)
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(a) Out-of-plane velocity contours
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(b) Temperature (fluid & solid)



Part II: Snapshot velocity field (2562)

Vector field out-of-plane velocity component



Part III: Conclusions & outlook

Conclusions:

• “Cartesian grid representation” suitable reconstruction of
porous media described by imaging techniques

• Numerical approximation strategy reliably captures:

− Laminar fluid dynamics using immersed boundary method
− Conjugate heat transfer using single temperature

equation

Outlook:

• Improve accuracy of immersed boundary method

• Incorporate chemical species interactions


