Introduction and Objectives

In the last 40 years, smoking has been identified as a risk factor for cardiovascular disease (CVD) including coronary artery disease, peripheral arterial disease and stroke (Pipe et al 2010). The mechanisms by which smoking influences CVD risk have not been fully elucidated, however, there is consistent evidence that smoking alters lipid metabolism and this could be one of the underlying factors by which smoking increased CVD risk (Frei et al 1991). Furthermore, some studies have shown reversal of smoking deleterious effect on lipids after smoking cessation (Maeda et al 2003).

It has been known since the 1950's that High-Density Lipoprotein Cholesterol (HDL-C) is associated with a decreased risk of CVD. The two sub fractions of HDL-C (HDL-C₂ and HDL-C₃) have also been associated to decreased CVD risk separately (Robinson et al 1987). The opposite association is seen for triglyceride levels (TG) and CVD risk as high levels of TG are associated to increased risk of myocardial infarction and stroke (Alagona 2009). Other lipid-carrying proteins associated with a decreased risk are apolipoproteins A-I (Apo A-I) and A-II (Apo A-II) (Faergman 2006) while apoliporotein B (Apo B) and the ratio of Apo B/Apo-A-I are associated with increased risk for CVD morbidity and mortality (Holewijn et al 2010). Finally, Lipoprotein (a) [Lp(a)] levels have also been associated to increased risk of CVD risk (Emerging Risk Factors Collaboration, 2009).

The aim of this study is to assess the difference in lipid levels between smokers and non-smokers and the effect of smoking cessation on the same parameters.

Materials and Methods

The Medline database (Pubmed) was searched for studies that evaluated the relationship between smoking or smoking cessation and lipid parameters which included: HDL-C (including its sub fractions HDL-C₂ and HDL-C₃), apolipoproteins (Apo A-I, Apo A-II, Apo B), Lip (a) and TG. The search was performed between September 28th and April 10th 2013 using the following key words: "smoking", "smoking cessation", "quitting", "apolipoprotein", "Lip (a)", "High Density Lipoprotein", "triglyceride". Selection of articles was further limited to those written in English and considering human populations. To identify other available studies, the reference lists of the publications obtained through the original search were checked for any additional articles.

Inclusion Criteria

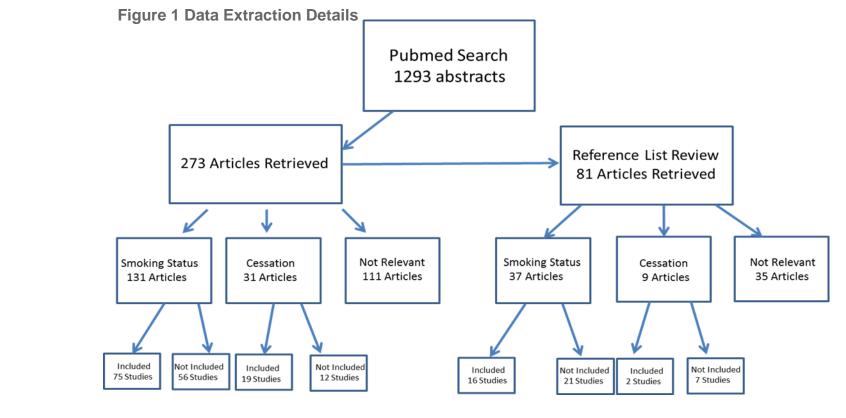
- Case control or cohort studies (observational and experimental studies)
- Adult human populations were studied
- Measurements of HDL-C, TG or Apolipoproteins by exposure with the following measures available: mean lipid levels by group, SD or SE (of the mean), sample size per group or with enough information to allow for the calculation of mean and SD. Studies published after 1970 (inclusive)

Exclusion Criteria

- Review articles, case reports, articles or editorials
- Reports with incomplete data which could not be incorporated into Revman 5.1. Duplicate publication of the same study
- Studies performed in diseased populations
- Unknown time of guitting for cessation studies

Statistical Analysis

To quantify the effects of smoking and smoking cessation on lipid levels, pooled mean differences between smokers and non-smokers (when assessing effects of smoking on lipids) or between quitters and their baseline measurements (when assessing the effects of quitting smoking on lipid parameters) and 95% confidence intervals (95%CI) were calculated using the fixed-effects model in Review Manager version 5.0 (Cochrane Collaboration, Oxford, UK). The degree of heterogeneity between the study results was tested by the inconsistency statistic (I²) (Higgins et al 2003), when the between study heterogeneity was high (I²>75%) the random effects model was used to correct for heterogeneity and the results compared to the fixed effects model. Funnel plots were used to evaluate publication bias (Macaskill et al 2001).


PMI RESEARCH & DEVELOPMENT

Quantification of the Effect of Smoking and Smoking Cessation on Lipid Parameters: A Meta-Analysis

Results

Search Results

A total of 1293 studies were identified through the Pubmed search and the reference list check yielded 81 studies. A detailed description of the data extraction is shown on Figure

Smoking Influence on Lipid Levels

Seventy-eight studies presented data on smoking status and HDL-C levels. The results of the meta-analyses for the effect of smoking on HDL-C showed that smokers have lower levels of HDL-C than non-smokers (mean difference = -0.09,mmol/L 95%CI:-0.10, -0.08, p<0.00001) (Table 1). Since the heterogeneity among studies was high (I² = 91%) subgroup analyses were performed by geographic area. Applying a random effects model to the meta-analysis yielded similar results (mean difference = -0.09 mmol/L, 95%CI: -0.11, -0.08, p<0.00001). Further subgroup analyses by year of publication did not yield different results. Analyses limiting the number of studies to papers defining smoking as 20 cigarettes a day or more, saw a decrease in heterogeneity to 79% and it was also lower in geographical region subgroup analyses (Table 1).

The comparison of TG levels in smokers to non-smokers was reported by 58 studies. The overall meta-analysis results showed increased mean TG levels in smokers compared to non-smokers (mean difference = 0.14mmol/L, 95%CI:0.13,0.14, p<0.00001) (Table 2). The results did not significantly change after applying the random effects model (mean difference = 0.20 mmol/L, 95%CI: 0.15, 0.24, p<0.00001). To explain the heterogeneity subgroup analyses were performed by geographic region. When limiting by definition of smoking the overall results remained.

The results of the meta-analyses of the other lipid carrying proteins and the effect of smoking can be seen on Table 3. Statistically significant associations were found for HDL-C₂(mean difference = -0.09,mmol/L 95CI:-0.14, -0.05, p<0.0001, I^2 =29%), HDL-C₃(mean difference = -0.06 mmol/L, 95CI:-0.10, -0.03, p<0.0001, I² = 88%), Apo A-I (mean difference = -0.05 g/L, 95CI:-0.05, -0.04, p<0.00001, I² = 89%), Apo A-II (mean difference = -0.02, g/L 95CI:-0.02, -0.01, p < 0.0001, $I^2 = 52\%$), Apo B (mean difference = 0.07 g/L, 95CI:0.06, 0.07, p<0.00001, I² = 87%), Apo B/Apo A-I ratio (mean difference = 0.01, 95CI: 0.03, 0.05, p<0.00001, $I^2 = 99\%$). No difference in Lp(a) levels was found (mean difference = 1.46, g/L 95CI:-0.56, 3.49, p = 0.16, $I^2 = 0\%$).

The analyses were performed in a subsample of articles restricted by the definition of smoking whenever possible, this did not affect the results.

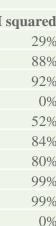
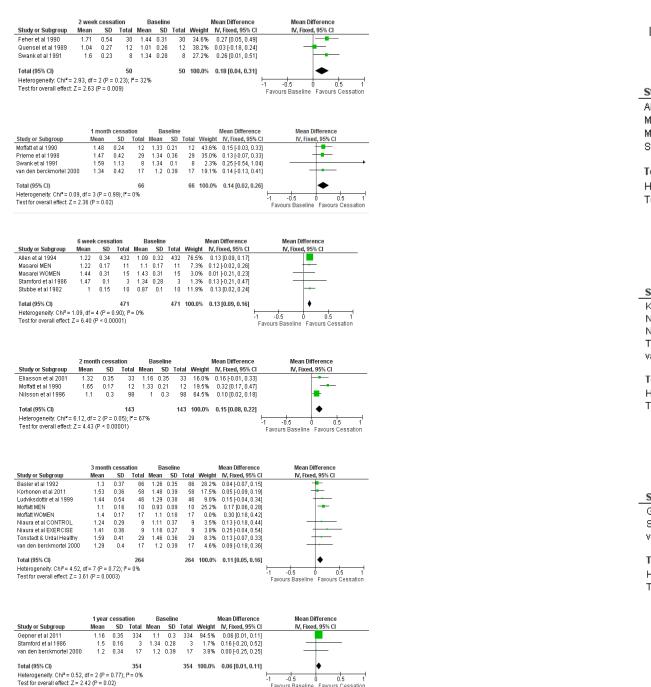

Гуре	Lipid	Countries	Studies	Comparison	s Mean Difference 95%CI	p-value	I squared	Table 2	Smok	king and TG le	vels – Fiz	xed Effects Mo	odel		
		US &						Туре	Lipic	d Countries	Studies	Comparisons	Mean Difference 95%CI	p-value	I so
A11	HDL-C	Canada	1	6 1	8 -0.06(-0.06, -0.05) mmol/I	. <0.00001	87%	All	TG	US & Canada	14	15	0.11 (0.08, 0.14) mmol/L	< 0.00001	l I
A11	HDL-C	Europe	4	1 6	61 -0.07(-0.07, -0.06) mmo/I	. <0.00001	72%	All	TG	Europe	25	30	0.07 (0.06, 0.09) mmol/L	< 0.00001	l I
All	HDL-C	Asia	1.	5 3	-0.10(-0.11, -0.10) mmol/I	. <0.00001	87%	All	TG	Asia	14	27	0.18 (0.17, 0.19) mmol/L	< 0.00001	l I
A11	HDL-C	India		4	4 -0.17 (-0.20, 0.15) mmol/I	. <0.00001	98%	All	TG	Other	5	7	0.11 (0.07, 0.16) mmol/L	< 0.00001	l I
411	HDL-C	Other		7	9 -0.05 (-0.06, -0.04) mmol/I	< < 0.00001	46%	All	TG	Total	58	79	0.14 (0.13, 0.14) mmol/L	< 0.00001	L
A11	HDL-C	Total	8	3 12	24 -0.08 (-0.09, -0.08) mmol/I	. <0.00001	87%	>20 cigs	TG	US & Canada	3	3	0.08 (0.01, 0.15) mmol/L	< 0.00001	l I
>20 cigs	HDL-C	US		б	7 -0.12 (-0.15, -0.09) mmol/I	. <0.00001	86%	>20 cigs	TG	Europe	5	8	0.23 (0.20, 0.27) mmol/L	< 0.00001	I
>20 cigs	HDL-C	Europe		9 2	2 -0.08 (-0.09, -0.06) mmol/I	. <0.00001	64%	>20 cigs	TG	Asia	7	8	0.38 (0.28, 0.47) mmol/L	< 0.00001	I
>20 cigs	HDL-C	Asia		8	8 -0.09 (-0.10, -0.08) mmol/I	. <0.00001	85%	>20 cigs	TG	Turkey	2	3	0.00 (-0.07, 0.08) mmol/L	0.91	I
>20 cigs	HDL-C	Other		4	5 -0.05 (-0.06, -0.04) mmol/I	. <0.00001	10%	>20 cigs	TG	Total	17	22	0.18 (0.15, 0.21) mmol/L	< 0.00001	L
>20 cigs	HDL-C	Total	2	7 4	2 -0.08 (-0.08, -0.07) mmol/I	< 0.00001	79%								

Table 3 S	moking & Othe	r lipid carı	rying proteins	- Fixed Effects Model		
Studies	Lipid	Studies	Comparisons	Mean Difference 95%CI	p-value	I squared
All	HDL-C2	6	7	-0.09 (-0.14, -0.05) mmol/L	< 0.0001	29%
All	HDL-C3	6	7	-0.06 (-0.10, -0.03) mmol/L	< 0.0001	88%
All	Apo A-I	21	26	-0.05 (-0.05, -0.04) g/L	< 0.00001	92%
>20 cigs	Apo A-I	4	7	-0.10 (-0.15, -0.05) g/L	0.0001	0%
All	Apo A-II	6	8	-0.02 (-0.02,-0.01) g/L	< 0.0001	52%
All	Apo B	16	16	0.07 (0.06, 0.08) g/L	< 0.00001	84%
>20 cigs	Apo B	4	6	0.07 (0.03, 0.11) g/L	0.002	80%
All	Apo B/Apo A-I	12	14	0.01 (0.00, 0.01)	< 0.00001	99%
>20 cigs	Apo B/Apo A-I	4	6	0.04 (0.03, 0.05)	< 0.00001	99%
All	Lip(a)	5	5	1.46 ('-0.56, 3.49) g/L	0.16	0%

Conference ACE Meeting 2013 Louiville, KY, USA 21st-24th September

AM Gonzalez-Zuloeta, G de La Bourdonnaye, GS Baker, R Weitkunat, F Lüdicke. Research & Development, Philip Morris Products SA, Neuchâtel, Switzerland


Rea	asons for Exclusion:
•	No/incomplete
	information
۰	Children included
•	Repeated Study
٠	Not Humans
•	Diseased Populations
Ad	ditionally for cessation
stu	dies:
•	Comparison to
	reducers
٠	Unknown time of
	anitting

Smoking Cessation & Lipid Levels

For the analyses of the effect of smoking cessation, 40 studies were retrieved that compared lipid levels collected at baseline with those after 1 week to 1 year after cessation. The study by Maeda et al (2003) which was a meta-analysis, was used to identify additional studies. Only 20 studies were included in the analyses. Articles comparing HDL-C levels at baseline with those at 1 month, 6 weeks, 2 months, 3 months and 1 year after quitting. Information on TG was found for observations after 6 weeks, 3 months and 1 year after cessation.

The results are seen on Figure 2 for HDL-C and Figure 3 for TG. Changes in HDL-C were seen as early as 2 weeks after cessation (mean difference= 0.18 mmol/L. 95%CI: 0.04, 0.31, p=0.009, I²=32%) although the impact of cessation on HDL-C diminished over time (mean difference=0.06 mmol/L, 95%CI: 0.01, 0.11, p=0.02, I²=0%). There was no influence of smoking cessation on TG levels.

Summary and Conclusions

The meta-analyses show that smokers have a worse lipid profile characterized by lower HDL-C (including HDL-C₂ and HDL-C₃), Apo A-I and A-II and higher TG, Apo B and Apo B/Apo A-I ratio, all of which have been associated to cardiovascular disease risk. The meta-analysis of smoking cessation demonstrates an improvement of the lipid profile of those who quit smoking. Levels of HDL-C increase as early as 2 weeks after quitting and remain higher 1 year after, although the increase is not as steep as in early cessation. We did not find a decrease in TG levels after smoking cessation and there were not enough publications to perform analyses for the other lipid measurements included in the first part of our analyses. Smoking cessation has been proven to improve lipid profiles in healthy individuals taking no medication or short-term nicotine replacement therapy (Botella-Carretero et al 2004), although there is consistent evidence that smoking cessation is followed by a variable degree of weight gain that could be the reason behind the lack of change in TG levels (Botella-Carretero et al 2004).

In conclusion, smoking cessation improves levels of HDL-C while no effect on TG levels was seen in this meta analysis, possibly due to the weight gain that is observed in those who stop <u>smoking.</u>

References

Alagona P Jr.'Beyond LDL cholesterol: the role of elevated triglycerides and low HDL cholesterol in residual CVD risk remaining after statin therapy.' Am J Manag Care. 2009 Mar;15(3 Suppl):S65-73. Review.

Emerging Risk Factors Collaboration Erqou S, Kaptoge S, Perry PL, Di Angelantonio E, Thompson A, White IR, Marcovina SM, Collins R, Thompson SG, Danesh J.'Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality.' JAMA. 2009 Jul 22;302(4):412-23. Faergeman O. 'Introduction: Apolipoproteins and guidelines for prevention of cardiovascular disease.' J Intern Med. 2006 May;259(5):434-6. Review.

Frei B, Forte TM, Ames BN et al 'Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipoprotein properties in human blood plasma. Protective effects of ascorbic acid.' Biochem J. 1991 Jul 1; 277 (Pt 1):133-8. Holewijn S, den Heijer M, Swinkels DW et al 'Apolipoprotein B, non-HDL cholesterol and LDL cholesterol for identifying individuals at increased cardiovascular risk.' J Intern Med. 2010 Dec:268(6):567-77. Macaskill, P., S.D. Walter, and L. Irwig, 'A comparison of methods to detect publication bias in meta-analysis.' Stat Med, 2001. 20(4): p. 641-54. Maeda K, Noguchi Y, Fukui T. 'The effects of cessation from cigarette smoking on the lipid and lipoprotein profiles: a meta-analysis.' Prev Med. 2003 Oct;37(4):283-90.

Higgins JPT, Thompson SG, Deeks JJ et al 'Measuring inconsistency in meta-analyses' BMJ. 2003 September 6; 327(7414): 557–560. Pipe AL, Papadakis S, Reid RD 'The role of smoking cessation in the prevention of coronary artery disease.' Curr Atheroscler Rep. 2010 Mar;12(2):145-50.

Robinson D, Ferns GA, Bevan EA et al 'High density lipoprotein subfractions and coronary risk factors in normal men.'Arteriosclerosis. 1987 Jul-Aug;7(4):341-6. Botella-Carretero JI, Escobar-Morreale HF et al 'Weight gain and cardiovascular risk factors during smoking cessation with bupropion or nicotine.' Horm Metab Res. 2004 Mar;36(3):178-82.

gure 3 Smoking Cessation and TG Levels

Study or Subgroup Mean SD Total Mean SD Total Weight N Allen et al 1994 1.82 1.13 432 1.64 0.98 432 51.4% 0 Masarei MEN 0.98 0.69 11 1.12 0.86 11 2.4% -0 Masarei WOMEN 0.72 0.19 15 0.85 0.31 15 30.2% -0 Stamford et al 1986 0.96 0.2 3 1.11 0.1 3 16.0% -0 Total (95% CI) 461 461 100.0% 0 Heterogeneity: Chi ² = 9.45, df = 3 (P = 0.02); l ² = 68% Test for overall effect: $Z = 0.50$ (P = 0.62) Total Mean SD Total Mean SD Total Weight Meight Korhonen et al 2011 1.43 0.81 58 1.42 0.85 58 33.3% Niaura et al CNTROL 0.94 0.34 9 0.87 0.34 9 9.8% Tonstadt & Urdal He	Difference Mean Difference ixed, 95% CI IV, Fixed, 95% CI 8 [0.04, 0.32] [-0.79, 0.51] [-0.31, 0.05] [-0.40, 0.10] [-0.08, 0.13] -1 -0.5 0 0.5 Favours Cessation Favours Baselin an Difference Mean Difference 7, Fixed, 95% CI IV, Fixed, 95% CI 01 [-0.29, 0.31] 07 [-0.24, 0.38] 31 [-0.87, 0.25]
Allen et al 1994 1.82 1.13 432 1.64 0.98 432 51.4% 1 Masarei MEN 0.98 0.69 11 1.12 0.86 11 2.4% -0 Masarei WOMEN 0.72 0.19 15 0.85 0.31 15 30.2% -0 Stamford et al 1986 0.96 0.2 3 1.11 0.1 3 16.0% -0 Total (95% CI) 461 461 100.0% 0. Heterogeneity: Chi ² = 9.45, df = 3 (P = 0.02); I ² = 68% Test for overall effect: Z = 0.50 (P = 0.62) Total Mean SD Total Mean SD Total Mean SD Total Weight Korhonen et al 2011 1.43 0.81 58 1.42 0.85 58 33.3% Niaura et al CONTROL 0.94 0.34 9 0.87 0.34 9 9.8% Tonstadt & Urdal Healthy 1.69 1.04 29 1.58 1.03 29 10.7% van den berckmortel 2000 1.45 0.64 17 1.33 0.68	8 [0.04, 0.32]
Masarei MEN 0.98 0.69 11 1.12 0.86 11 2.4% -0 Masarei WOMEN 0.72 0.19 15 0.85 0.31 15 30.2% -0 Stamford et al 1986 0.96 0.2 3 1.11 0.1 3 16.0% -0 Total (95% CI) 461 461 100.0% 0. Heterogeneity: Chi ² = 9.45, df = 3 (P = 0.02); I ² = 68% Test for overall effect: Z = 0.50 (P = 0.62) Total Mean SD Total Weight Korhonen et al 2011 1.43 0.81 58 1.42 0.85 58 33.3% Niaura et al CONTROL 0.94 0.34 9 0.87 0.34 9 30.8% Niaura et al EXERCISE 0.88 0.34 9 1.19 0.78 9 9.8% Tonstadt & Urdal Healthy 1.69 1.04 29 1.58 1.03 29 10.7% van den berckmortel 2000 1.45 0.64 17 1.33	[-0.79, 0.51] [-0.31, 0.05] [-0.40, 0.10] [-0.08, 0.13] -1 -0.5 -1 -0.5 Favours Cessation Favours Cessation Fixed, 95% CI .01 [-0.29, 0.31] .07 [-0.24, 0.38]
Masarei WOMEN 0.72 0.19 15 0.85 0.31 15 30.2% -0 Stamford et al 1986 0.96 0.2 3 1.11 0.1 3 16.0% -0 Total (95% CI) 461 461 461 100.0% 0. Heterogeneity: Chi ² = 9.45, df = 3 (P = 0.02); I ² = 68% Test for overall effect: Z = 0.50 (P = 0.62) Total Mean SD Total Weight Korhonen et al 2011 1.43 0.81 58 1.42 0.85 58 33.3% Niaura et al CONTROL 0.94 0.34 9 0.87 0.34 9 30.8% Niaura et al EXERCISE 0.88 0.34 9 1.19 0.78 9 9.8% Tonstadt & Urdal Healthy 1.69 1.04 29 1.58 1.03 29 10.7% van den berckmortel 2000 1.45 0.64 17 1.33 0.68 17 15.4% Total (95% CI) 122 122 100.0% 122	[-0.31, 0.05]
Stamford et al 1986 0.96 0.2 3 1.11 0.1 3 16.0% -0 Total (95% CI) 461 461 100.0% 0. Heterogeneity: Chi ² = 9.45, df = 3 (P = 0.02); l ² = 68% Test for overall effect: $Z = 0.50$ (P = 0.62) Baseline Study or Subgroup Mean SD Total Mean SD Total Mean SD Total Weight Korhonen et al 2011 1.43 0.81 58 1.42 0.85 58 33.3% Niaura et al CONTROL 0.94 0.34 9 0.87 0.34 9 30.8% Niaura et al EXERCISE 0.88 0.34 9 1.19 0.78 9 9.8% Tonstadt & Urdal Healthy 1.69 1.04 29 1.58 1.03 29 10.7% van den berckmortel 2000 1.45 0.64 17 1.33 0.68 17 15.4% Total (95% CI) 122 122 102 100.0% Heterogeneity: Chi ² = 1.76, df = 4 (P = 0.78); l ² = 0% 122 100.0% Test for overall effect: Z	[-0.40, 0.10] [-0.08, 0.13] -1 -0.5 0 0.5 Favours Cessation Favours Baselin an Difference /, Fixed, 95% Cl IV, Fixed, 95% Cl 01 [-0.29, 0.31] 07 [-0.24, 0.38]
3 month cessation Baseline Study or Subgroup Mean SD Total Mean SD Total Weight Korhonen et al 2011 1.43 0.81 58 1.42 0.85 58 33.3% Niaura et al CONTROL 0.94 0.34 9 0.87 0.34 9 30.8% Niaura et al EXERCISE 0.88 0.34 9 1.19 0.78 9 9.8% Tonstadt & Urdal Healthy 1.69 1.04 29 1.58 1.03 29 10.7% van den berckmortel 2000 1.45 0.64 17 1.33 0.68 17 15.4% Total (95% Cl) 122 122 100.0% 122 100.0% Heterogeneity: Chi ^P = 1.76, df = 4 (P = 0.78); I ^P = 0% Test for overall effect: Z = 0.28 (P = 0.78) Baseline M Study or Subgroup Mean SD Total Mean SD Total Weight	an Difference Mean Difference /, Fixed, 95% Cl IV, Fixed, 95% Cl 01 [-0.29, 0.31]
Test for overall effect: $Z = 0.50$ (P = 0.62) 3 month cessation Baseline Study or Subgroup Mean SD Total Mean SD Niaura et al CONTROL 0.94 0.34 9 0.87 0.34 9 30.8% Niaura et al CONTROL 0.94 0.34 9 1.19 0.78 9 9.8% Tonstadt & Urdal Healthy 1.69 1.04 29 1.58 1.03 29 10.7% van den berckmortel 2000 1.45 0.64 17 1.33 0.68 17 15.4% Total (95% CI) 122 122 100.0%	an Difference Mean Difference /, Fixed, 95% CI IV, Fixed, 95% CI .01 [-0.29, 0.31] .07 [-0.24, 0.38]
3 month cessation Baseline Study or Subgroup Mean SD Total Meight Korhonen et al 2011 1.43 0.81 58 1.42 0.85 58 33.3% Niaura et al CONTROL 0.94 0.34 9 0.87 0.34 9 30.8% Niaura et al EXERCISE 0.88 0.34 9 1.19 0.78 9 9.8% Tonstadt & Urdal Healthy 1.69 1.04 29 1.58 1.03 29 10.7% van den berckmortel 2000 1.45 0.64 17 1.33 0.68 17 15.4% Total (95% CI) 122 122 100.0% 122 100.0% 125 16.6 17 15.9 16.7 <td>an Difference Mean Difference /, Fixed, 95% CI IV, Fixed, 95% CI .01 [-0.29, 0.31] .07 [-0.24, 0.38]</td>	an Difference Mean Difference /, Fixed, 95% CI IV, Fixed, 95% CI .01 [-0.29, 0.31] .07 [-0.24, 0.38]
Study or Subgroup Mean SD Total Mean SD Total Weight Korhonen et al 2011 1.43 0.81 58 1.42 0.85 58 33.3% Niaura et al CONTROL 0.94 0.34 9 0.87 0.34 9 30.8% Niaura et al EXERCISE 0.88 0.34 9 1.19 0.78 9 9.8% Tonstadt & Urdal Healthy 1.69 1.04 29 1.58 1.03 29 10.7% van den berckmortel 2000 1.45 0.64 17 1.33 0.68 17 15.4% Total (95% CI) 122 122 100.0% Heterogeneity: Chi ² = 1.76, df = 4 (P = 0.78); I ² = 0% 122 100.0% Test for overall effect: Z = 0.28 (P = 0.78) 122 102 100.0%	/, Fixed, 95% Cl IV, Fixed, 95% Cl 01 [-0.29, 0.31]
Korhonen et al 2011 1.43 0.81 58 1.42 0.85 58 33.3% Niaura et al CONTROL 0.94 0.34 9 0.87 0.34 9 30.8% Niaura et al CONTROL 0.94 0.34 9 0.87 0.34 9 30.8% Niaura et al EXERCISE 0.88 0.34 9 1.19 0.78 9 9.8% Tonstadt & Urdal Healthy 1.69 1.04 29 1.58 1.03 29 10.7% van den berckmortel 2000 1.45 0.64 17 1.33 0.68 17 15.4% Total (95% CI) 122 122 100.0% Heterogeneity: Chi ² = 1.76, df = 4 (P = 0.78); I ² = 0% 1 7 9 1 1 1 1 1 0.00% Heterogeneity: Chi ² = 1.76, df = 4 (P = 0.78); I ² = 0% 1 9 1 9 1 9 1 1 0.00% 1 1 1 1 1 1 1 <td>01 [-0.29, 0.31]</td>	01 [-0.29, 0.31]
Niaura et al CONTROL 0.94 0.34 9 0.87 0.34 9 30.8% Niaura et al EXERCISE 0.88 0.34 9 1.19 0.78 9 9.8% Tonstadt & Urdal Healthy 1.69 1.04 29 1.58 1.03 29 10.7% van den berckmortel 2000 1.45 0.64 17 1.33 0.68 17 15.4% Total (95% Cl) 122 122 100.0% Heterogeneity: Chi ² = 1.76, df = 4 (P = 0.78); I ² = 0% Test for overall effect: Z = 0.28 (P = 0.78) 122 100.0% Mean SD Total Mean SD Total Mean SD Total Meight	.07 [-0.24, 0.38]
Niaura et al EXERCISE 0.88 0.34 9 1.19 0.78 9 9.8% Tonstadt & Urdal Healthy 1.69 1.04 29 1.58 1.03 29 10.7% van den berckmortel 2000 1.45 0.64 17 1.33 0.68 17 15.4% Total (95% CI) 122 122 100.0% Heterogeneity: Chi ² = 1.76, df = 4 (P = 0.78); I ² = 0% Test for overall effect: Z = 0.28 (P = 0.78) 122 100.0% Mean SD Total Mean SD Total Weight	
Tonstadt & Urdal Healthy 1.69 1.04 29 1.58 1.03 29 10.7% van den berckmortel 2000 1.45 0.64 17 1.33 0.68 17 15.4% Total (95% CI) 122 122 100.0% Heterogeneity: Chi ² = 1.76, df = 4 (P = 0.78); I ² = 0% Test for overall effect: Z = 0.28 (P = 0.78) 1 9 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<	31 [-0.87, 0.25]
van den berckmortel 2000 1.45 0.64 17 1.33 0.68 17 15.4% Total (95% CI) 122 122 100.0% Heterogeneity: Chi² = 1.76, df = 4 (P = 0.78); l² = 0% Test for overall effect: Z = 0.28 (P = 0.78) 1<	
Total (95% CI)122122100.0%Heterogeneity: Chi² = 1.76, df = 4 (P = 0.78); l² = 0%Test for overall effect: $Z = 0.28$ (P = 0.78)1 year cessationBaselineMStudy or SubgroupMeanSDTotalMeanSDTotalWeight	11 [-0.42, 0.64]
Heterogeneity: Chi ² = 1.76, df = 4 (P = 0.78); I ² = 0% Test for overall effect: Z = 0.28 (P = 0.78) 1 year cessation Baseline M Study or Subgroup Mean SD Total Mean SD Total Weight	12 [-0.32, 0.56]
Test for overall effect: Z = 0.28 (P = 0.78) 1 year cessation Baseline N Study or Subgroup Mean SD Total Mean SD Total Weight	02 [-0.15, 0.20]
1 year cessation Baseline M Study or Subgroup Mean SD Total Mean SD Total Weight	-1 -0.5 0 0.5
Study or Subgroup Mean SD Total Mean SD Total Weight	Favours Cessation Favours Baselin
Study or Subgroup Mean SD Total Mean SD Total Weight	
Study or Subgroup Mean SD Total Mean SD Total Weight	
	n Difference Mean Difference
	Fixed, 95% Cl IV, Fixed, 95% Cl
•	02 [-0.16, 0.12]
	0 [-0.04, 0.24]
van den berckmortel 2000 1.45 0.77 17 1.33 0.68 17 4.2%	2 [-0.37, 0.61]
Total (95% CI) 354 354 100.0%	
Heterogeneity: Chi ² = 1.44, df = 2 (P = 0.49); l ² = 0%	4 [-0.06, 0.14]
Test for overall effect: $Z = 0.84$ (P = 0.40)	4 [-0.06, 0.14]