

PMI RESEARCH & DEVELOPMENT

ASSESSING THE EFFECTS OF REPEATED CIGARETTE SMOKE-EXPOSURE USING HUMAN ORGANOTYPIC SYSTEMS REPRODUCING THE RESPIRATORY TRACT IN VITRO

Carole Mathis

Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland

Recapitulation of In Vivo Biology by Organotypic Systems

Human Organotypic Cultures of Primary Bronchial and Nasal Epithelial Cells

COMPARISON AT THE MORPHOLOGICAL LEVEL (ANALYSIS DONE ON UNTREATED TISSUES)

p63⁺ basal cells

Muc5AC⁺ mucus secreting cells

Hematoxylin/Eosin

Whole cigarette smoke/aerosol exposure system (Vitrocell®)

Whole Smoke Repeated Exposure of Organotypic Cultures of Human Primary Bronchial and Nasal Epithelial Cells

Experimental Design						
HUMAN TISSUES	CONDITIONS	ENDPOINTS	0h	4h	24h	48h
BRONCHIAL MUCILAIR™ NASAL MUCILAIR™	SHAM CS 10% CS 16%	Cytotoxicity (LDH assay) Membrane Integrity (TEER) Gene Expression Profiles (Affymetrix) MicroRNA Expression Profiles (GeneChip) Histology (Alcian blue, H&E) Immunohistology (p63, Ki67, B-Tubulin, Muc5AC)	X X	X X	X X X X X X X	X X X X

Whole Smoke Repeated Exposure of Organotypic Cultures of Human Primary Bronchial and Nasal Epithelial Cells

Xenobiotic Metabolism Network Model and Biological Perturbation Assessment

PMI RESEARCH & DEVELOPMENT

(Ref. Iskandar A. R. et al. BioMed Research International - In press)

Nasal as a Surrogate for Bronchus – IN VIVO

Bronchial epithelium (GSE16008 dataset--smokers vs. non-smokers)

(Ref. Iskandar A. R. et al. BioMed Research International - In press)

Differential network backbone values - Organotypic Nasal

Nasal as a Surrogate for Bronchus – IN VITRO

In Vivo/In Vitro Comparison in the Xenobiotic Metabolism Network Model

(Ref. Iskandar A. R. et al. BioMed Research International - In press)

In Vivo/In Vitro Comparison

Top 10 Canonical Pathways Perturbed Over Post-Exposure Time and Over Dose in both Nasal and Bronchial Exposed Tissues

GENE SET ENRICHMENT ANALYSIS

- AP-1 transcription factor network
 Validated transcriptional targets of AP1 family members Fra1 and Fra2
- Proteasome
 Metabolism of xenobiotics by cytochrome P450
- Aurora B signaling
- MAPK signaling pathway
- Direct p53 effectors
- Genes involved in Cell Cycle, Mitotic
- Genes involved in Cell Cycle
- Genes involved in Metabolism of RNA

Dose- and Time-dependent Release of Pro-inflammatory Markers in both CS-exposed Bronchial and Nasal Tissues

CONCLUSIONS

CS DOSE- AND TIME-DEPENDENCY EFFECTS

- Activation of AP-1 pathway or of the xenobiotic metabolism at early post-exposure time points (0h and 4h).
- Similar dose- and time-dependent regulation of the release of pro-inflammatory markers (VEGF, IL-8 and MMP-1).

- Up-regulation of genes involved in cell cycle only in nasal tissue culture 48h after exposure
 - ➡ recovery process specific to the nasal epithelium?

NASAL AS A SURROGATE FOR BRONCHUS

COMPARISON IN VIVO / IN VITRO

Radina Kostadinova, Sandra Wagner, Anita R. Iskandar, Florian Martin, Yang Xiang, Carine Poussin, Marja Talikka, Walter K. Schlage, Diana Kuehn, Shoaib Majeeb, Stefan Frentzel, Nikolai Ivanov, Emmanuel Guedj, Rémi Dulize, Fabio Talamo, Marcel Geertz, Arno Knorr, Philippe Guy Alexandre, Julia Hoeng and Manuel C. Peitsch

Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland

