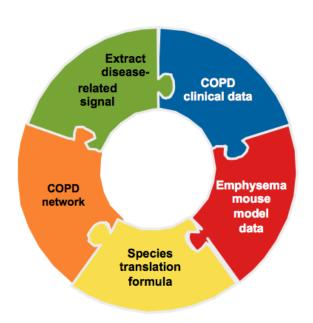


www.sbvimprover.com

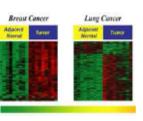
Verification of Systems Biology Research in the Age of Collaborative-Competition

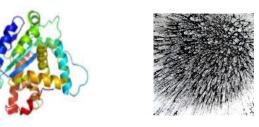

Erhan Bilal, PhD IBM Research, NY USA

Precision Medicine October 11th 2013 New York, USA

Outline

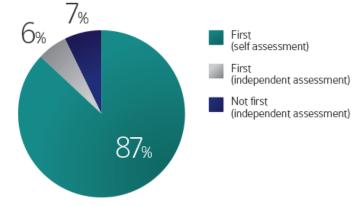
- IMPROVER at a glance
- Crowdsourcing
- Diagnostic Signature Challenge
- Species Translation Challenge
- Network Verification Challenge
- Grand Challenge


Why do we need IMPROVER?



We are experiencing a data deluge...

Genomic

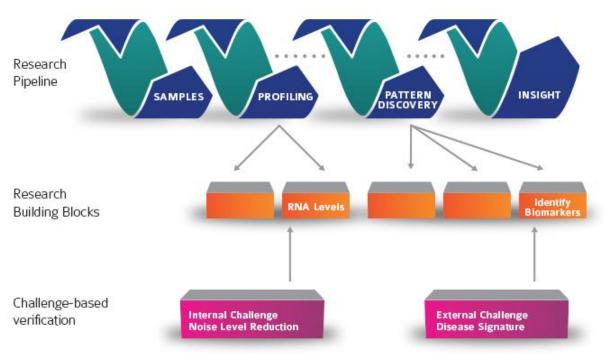

Literature

Molecular Profiles

Structures

Explosion of data

But we lack the corresponding validation tools...


The self-assessment trap: can we all be better than average?

Molecular Systems Biology 7: 537; published online 11 October 2011; doi:10.1038/msb.2011.70

Develop a robust methodology that verifies systems biology-based approaches

IMPROVER: Industrial Methodology for Process Verification in Research

Aims to provide a measure of quality control in R&D by identifying the building blocks that need verification in a complex industrial research pipeline

Crowdsourcing challenges with double blind performance assessment of building blocks

IBM collaborating on a project funded by Philip Morris International

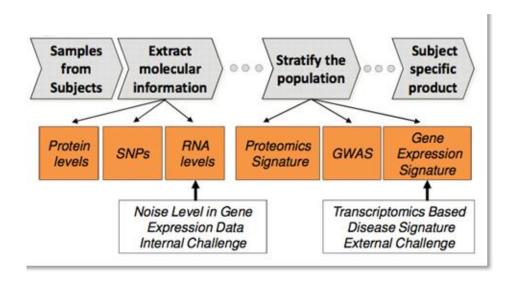
sby IMPROVER is a structured process for deconstructing and evaluating research components

BIOINFORMATICS

REVIEW

Vol. 28 no. 9 2012, pages 1193–1201 doi:10.1093/bioinformatics/bts116

Systems biology

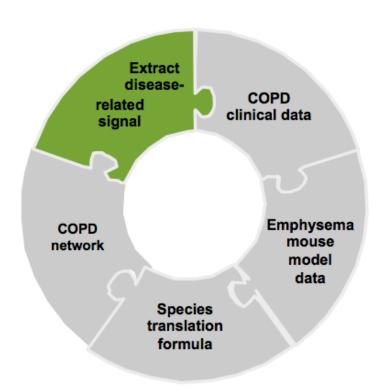

Advance Access publication March 14, 2012

Industrial methodology for process verification in research (IMPROVER): toward systems biology verification

Pablo Meyer^{1,†}, Julia Hoeng^{2,†}, J. Jeremy Rice^{1,†} Raquel Norel¹, Jörg Sprengel³, Katrin Stolle², Thomas Bonk², Stephanie Corthesy³, Ajay Royyuru^{1,*}, Manuel C. Peitsch^{2,*} and Gustavo Stolovitzky^{1,*}

¹IBM Computational Biology Center, Yorktown Heights, 10598 NY, USA, ²Phillip Morris Products SA, Research and Development, 2000, Neuchâtel, Switzerland and ³IBM Life Sciences Division,8802, Zurich, Switzerland

Bioinformatics 2012 28(9):1193-1201


Crowdsourcing advantages

- Many contributors with independent methods / knowledge
- Different solutions tackle various aspects of a complex problem
- The combination of solutions often outperforms the best performing submissions and is extremely robust → "Wisdom of Crowds"
- Nucleates a community around a given scientific problem
- Allows for unbiased benchmarking
- Establishes state-of-the-art technology and knowledge in a field
- Complements the classical peer-review process

Diagnostic Signature Challenge (completed)

www.sbvimprover.com

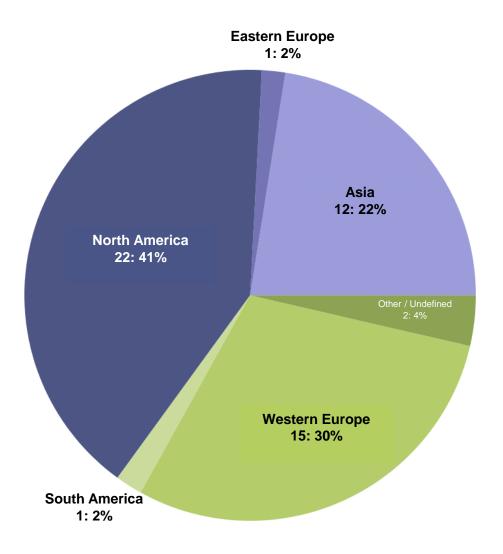
Diagnostic signature challenge

Aim to assess and verify computational approaches that classify clinical samples based on transcriptomics data.

Participants were asked to establish predictive signatures on unlabeled gene expression data sets in 4 disease areas

Chronic Obstructive Pulmonary Disease

Multiple Sclerosis


Lung Cancer

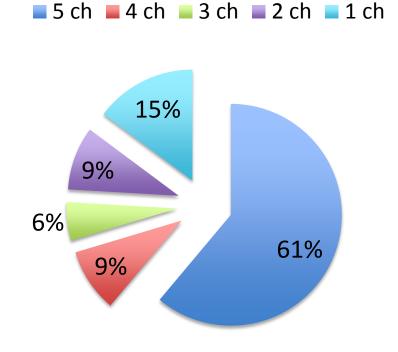
Psoriasis

Diagnostic Signature Challenge: overall participation

54 Teams from around the world participated

Diagnostic Signature Challenge participation

Submissions were spread evenly across all five sub-challenges:


Psoriasis: 49 participants

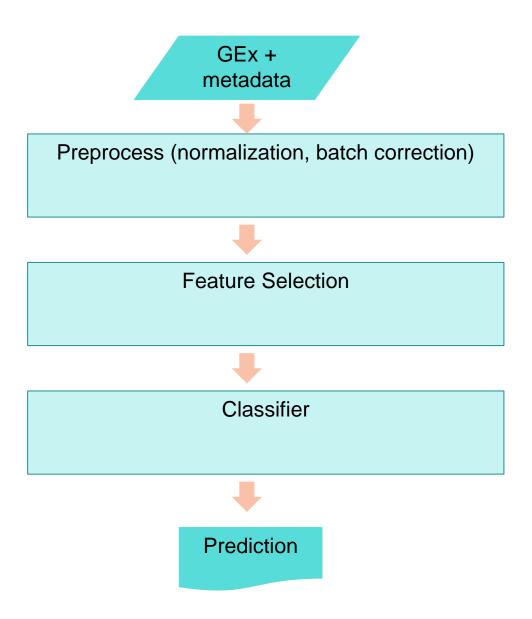
COPD: 40 participants

Lung Cancer: 46 participants

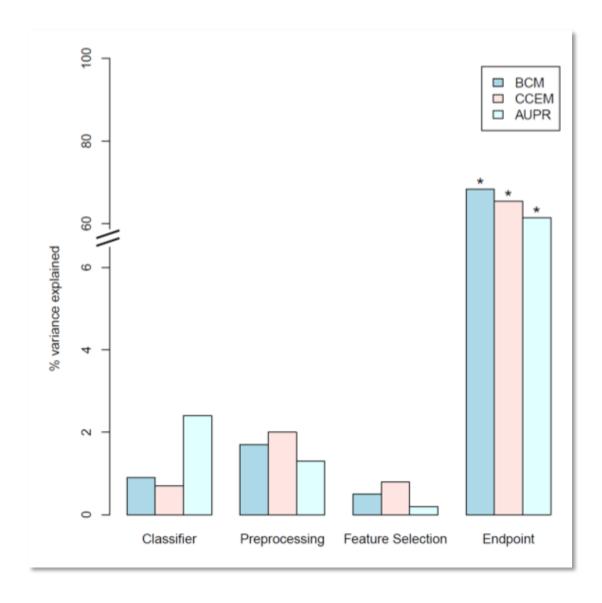
MS Diagnosis: 40 participants

MSS Staging: 39 participants

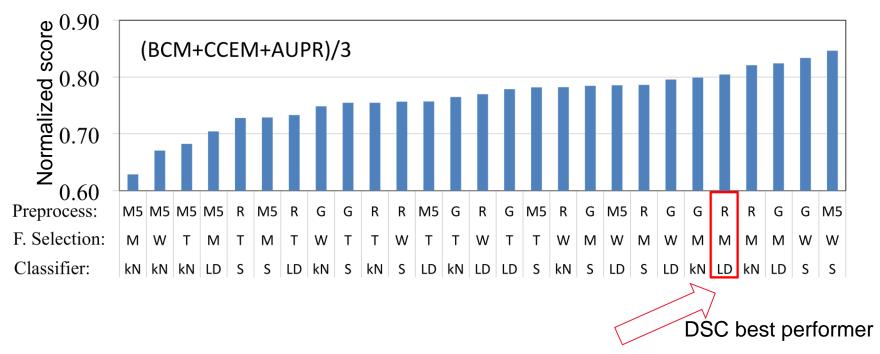
Most teams submitted predictions to all challenges (34/54)


Challenge structure

	sbv IMPROVER project
Project Type	Competition
Classification type	Confidence levels: 2-way + 4-way
Prediction type	Diagnosis, staging
Training Datasets	Public
Test Datasets	Created for or licensed to the sbv IMPROVER project Completely independent to the training datasets
Gain for community	 Available datasets can be used for benchmarking Determine the existence of a robust signature for a particular disease/data set Methods to be published in special issue of new journal Systems Biomedicine


Typical methodology

The disease endpoint was the biggest determinant of performance



Meta analysis of pipeline performance at conclusion of IMPROVER DSC

Virtual participants are created by combining different methods for data processing, feature selection and classifiers.

Preprocess ->	M5: MAS5	R: RMA	G:GRMA
Feature Selection ->	M: Moderated t-test	T: regular t-test	W: Wilcoxon rank test
Classifier ->	kN: kNN	LD: LDA	S: SVM

Adapted from "Strengths and limitations of microarray-based phenotype prediction: Lessons learned from the IMPROVER Diagnostic Signature Challenge", A. Tarca et. al., submitted

The Wisdom of Crowds for Diagnostics: aggregating predictions

Belief that subject has condition

	Team 1	Team 2	Team 3		
Subject 1	0.7	0.8	0.6		
Subject 2	0.5	0.7	0.8		
Subject 3	0.3	0	0.1		
Subject 4	0.9	0.4	0.7		
••••			••••		
Subject N-1	0.2	0.6	0.3		
Subject N	1.0	0.9	0.7		

Aggregate prediction by averaging beliefs

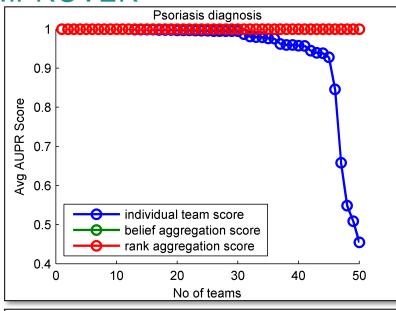
Belief aggregation

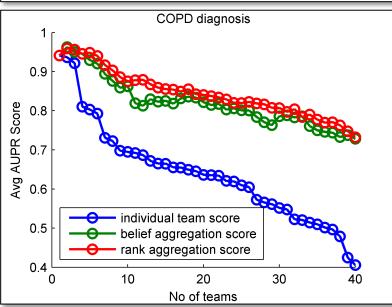
	Aggregate team
Subject 1	0.7
Subject 2	0.67
Subject 3	0.13
Subject 4	0.67
Subject N-1	0.37
Subject N	0.87

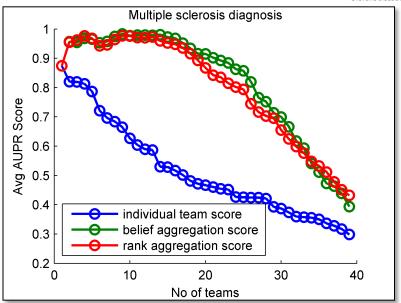
Transform into an ordered list

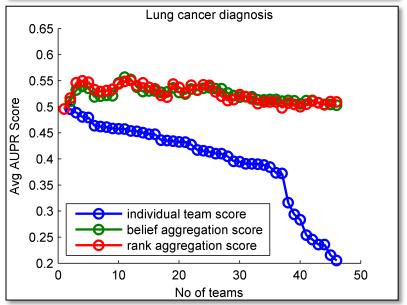
	Team 1	Team 2	Team 3
Subject 1	4	5	3
Subject 2	3	4	7
Subject 3	2	1	1
Subject 4	5	2	4
••••			••••
Subject N-1	1	3	2
Subject N	6	6	5

Aggregate prediction by averaging ranks


Rank aggregation


	Aggregate team
Subject 1	4
Subject 2	4.67
Subject 3	1.33
Subject 4	3.67
Subject N-1	2
Subject N	5.67


Rescore the aggregate predictions


Aggregation of Methods: Wisdom of Crowds at work in sbv IMPROVER

Lessons Learned from the 1st sbv IMPROVER Challenge

- The ability of computational methods to perform disease classification from transcriptomics data depends on endpoint of data (phenotype)
- Design of challenge data has to avoid confounding batch effects with phenotype effects.
- It may be wise not to provide all the data on the test set, as it can provide unintended information to the participants.
- Similar computational methods can have a wide range of performance within the same challenge: no single method was the clear winner

Diagnostic Signature Challenge

Symposium 2012 (2-3 October 2012 in Boston, MA, USA)

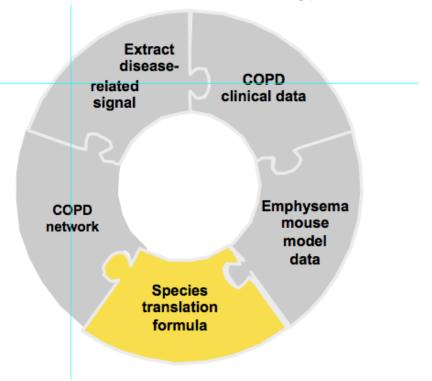
- Announced the best performing teams
- Discussed and shared experiences on SBV IMPROVER and the Diagnostic Signature Challenge
- Keynotes Speakers from Systems Biology Community

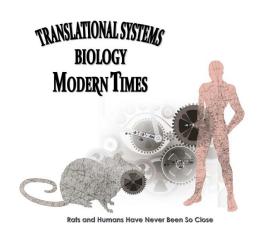
Systems Biology Verification: Diagnostic Signature Challenge completed

Congratulations to the best performing team from the sbv IMPROVER Diagnostic Signature Challenge: Adi L. Tarca and Roberto Romero

Manuel Peltsch, Philip Morris International (left), Adi L. Tarca, Wayne State University (center), Gustavo Stolovitsky, IBM (right) Photo by Kate Floor Photography

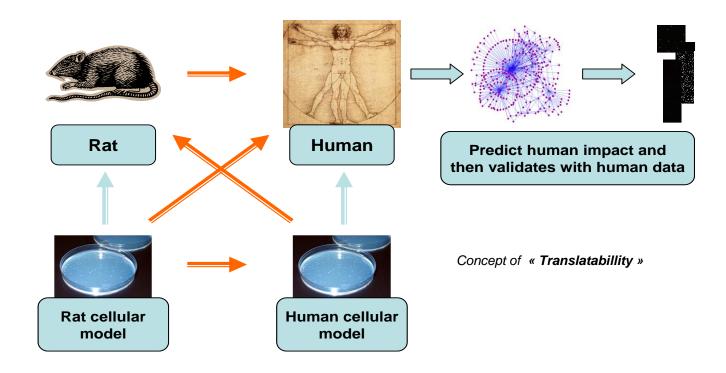
In October 2012, the results of the first sbv IMPROVER challenge were shared with the scientific community at a symposium in Boston, USA. Adi L. Tarca, Department of Computer Science & Center for Molecular Medicine and Genetics, Director, Bioinformatics and Computational Biology Unit, Perinatology Research Branch, NICHD, Wayne State University, received the first sbv IMPROVER research award of USD 50,000. The team also included Roberto Romero, Chief, Perinatology Research Branch, Head, Program for Perinatal Research and Obstetrics Intramural Division, NICHD, NIH. The results are planned to be published in early 2013.


The next sbv IMPROVER challenge is planned to launch in April 2013 and will focus on Species Translation data. For more details see www.sbvimprover.com.


The sbv IMPROVER project and www.sbvimprover.com are part of a collaboration designed to enable scientists to learn about and contribute to the development of a new crowd sourcing method for verification of scientific data and results. The project team includes scientists from Philip Morris International's (PMI) Research and Development department and IBM's Thomas J. Watson Research Center. The project is funded by PMI.

Species Translation Challenge

From Rat To Human: Understanding the Limits of Animal Models for Human Biology

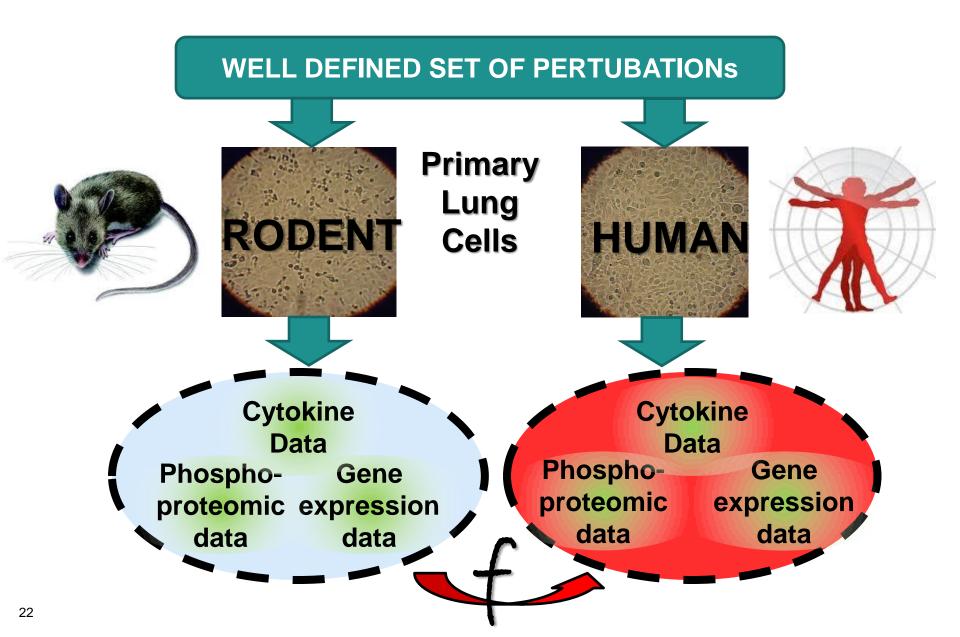


www.sbvimprover.com

Species Translation Challenge: Background and Goal

Goal: Verify the translatability of biological effects of perturbations in one species given information about the same perturbations in another species.

Scientific Questions



The **Species Translation Challenge** involves four sub-challenges that aim to shed light on important questions faced by the field:

- Can the perturbations of signaling pathways in one species predict the response to a given stimulus in another species?
- Which biological pathway functions and gene expression profiles are most robustly translated?
- Does translation depend on the nature of the stimulus or data type collected such as protein phosphorylation, gene expression and cytokine responses?
- Which computational methods are most effective for inferring gene, phosphorylation and pathway responses from one species to another?

Data production for Species Translation challenge

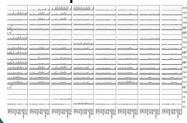
Overall Experimental Workflow


Step 1

Culture Cells Human/Rat

Step 2

In-silico Screening


Step 3

Validation of RNA & Protein assays

Step 4

Experimental Screen of Compounds

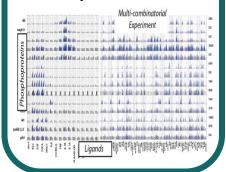
Step 5

Compound Selection

via a Gaussian Mixture Distribution model

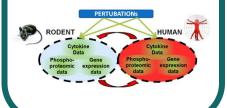
Deactivated Mode

Phosphorylation Value


Step 6

Experimental Design

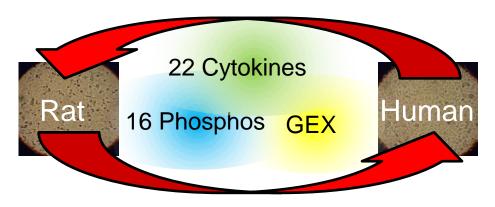
	Treatment 1							OD401G				N	14	- 21:	IS.			
	7	l	DE C	Ð	TGFA	N	9	8	Ż	118	ILIA	FLAG	TNFS	IN.	IGAL	2	FSTL	
	eatment 2	BTC	х	х	х	х	х		х	х	х			х				
	ء ا	BGF		х	х	х	х		х	х	х		х	х				
	ı≢	TGFA			х		х	х	х	х	х	х	х	х		х		
	ଧ୍ୟ	NRG1				х	х	х	х	х	х		х			х		
	Ľ	IL6					х		х		х		х			х		
	CD40LG							х		х								
TNF IL1B								х		х		х	х		х			
									×			Х						
ILIA											х		х	х	х			
FLAGELLIN												х						
TNFSF14												х	х		х			
TNFSF12 LGALS1													х		х			
														х				
		IFNB1														х	х	
		FSTL1															х	


Step 7

Data Acquisition

Step 8

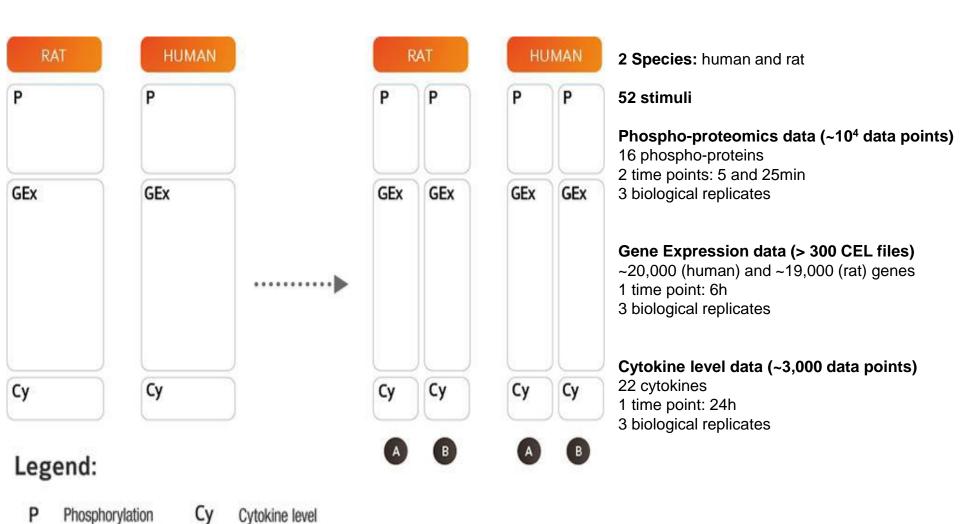
Data Analysis Species Comparison



Species Translation Challenge

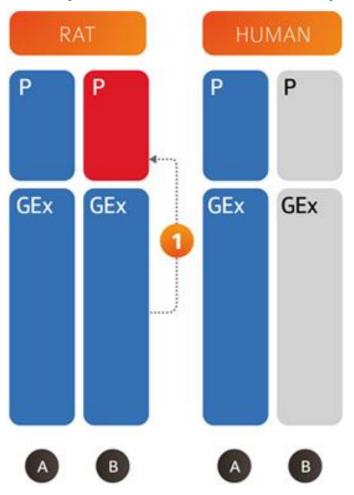
~5000 human and rat samples generated!! (~50x96plates)

- → The <u>largest</u> multiplexed screen
- → RNA+Phospho+Cyto data
- → Novel hits


~1000 compounds in-silico screen

~ 50 selected compounds with novel activity

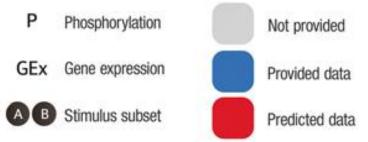
Data Compendium


Stimulus subset

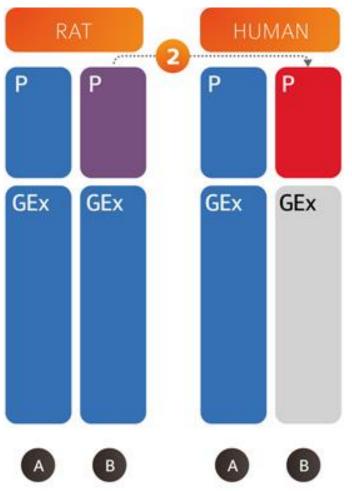
GEx

Gene expression

Sub-challenge 1 Intra-Species Protein Phosphorylation Prediction

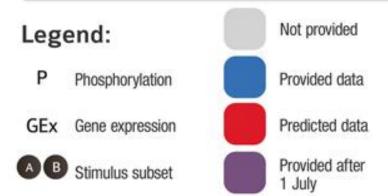


 Predict the protein phosphorylation status for each stimulus in Subset B of rat, from the corresponding gene expression information.

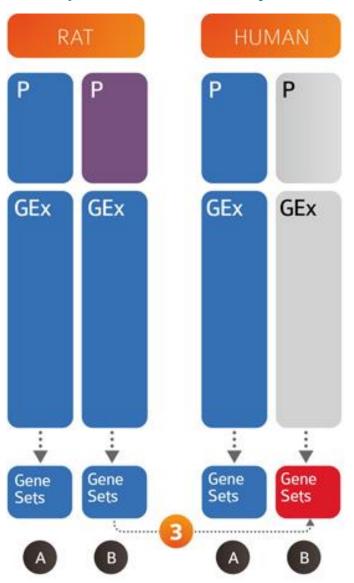

- Question:
 - Is gene expression data sufficiently informative to infer the phosphorylation status through a backward inference process?

Legend:

Sub-challenge 2 Inter-Species Protein Phosphorylation Prediction

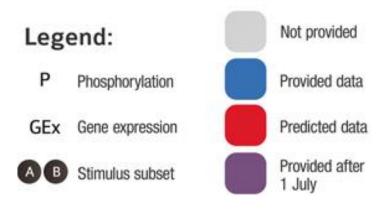


 Predict the protein phosphorylation status for each stimulus in subset B in human from the protein phosphorylation status for the same stimulus in subset B in rat.

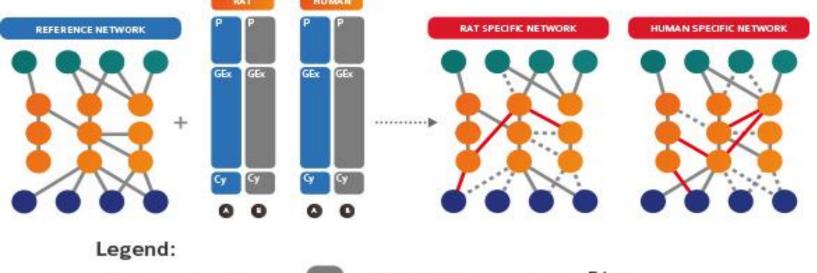

• Question:

– Are gene expression and phosphorylation data in one species sufficiently informative to infer the phosphorylation status in another species?

Sub-challenge 3 Inter-Species Pathway Perturbation Prediction



 Predict the gene sets representative of pathways/biological processes that are the most to least enriched among differentially expressed genes with respect to control for each stimulus in Subset B in human based on the corresponding data in rat.


Question:

– Can the perturbation of pathways be predicted in human from equivalent information in rat?

Sub-challenge 4 Species Specific Network Inference

- P Phosphorylation

 Not to be used

 Edges

 Provided data

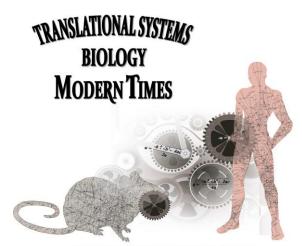
 Provided data

 Cy Cytokine level

 Inferred network

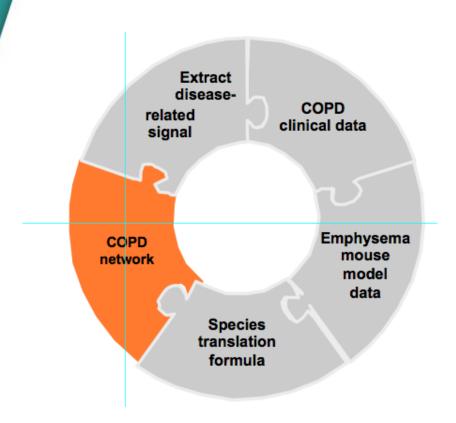
 Added edges

 Stimulus subset
- The goal is to infer human and rat networks given phosphoprotein, gene expression and cytokine data and a reference map provided as prior knowledge. Participants will use network inference to add or remove edges from the reference map to produce specific rat and human networks.
- Question:
 - Can biological networks be built by leveraging diverse 'omics' data to assess the commonalities and differences between the species?


Challenge results and award ceremony

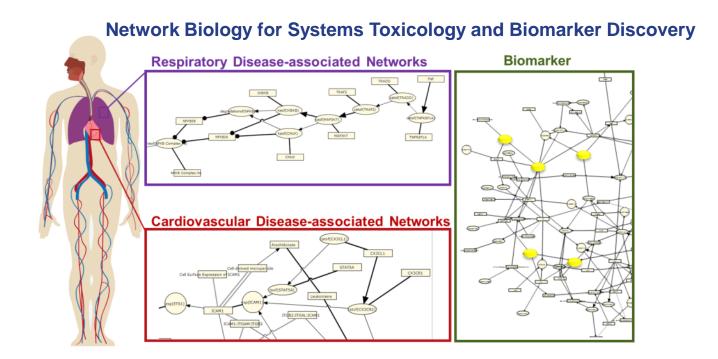
Symposium 2013 (29-31 October 20123 in Athens, Greece)

- Award ceremony
- Presentations by the best performing teams
- Keynote Speakers from Systems Biology Community


For more details on **sbv IMPROVER** and the Species Translation Challenge, visit www.sbvimprover.com

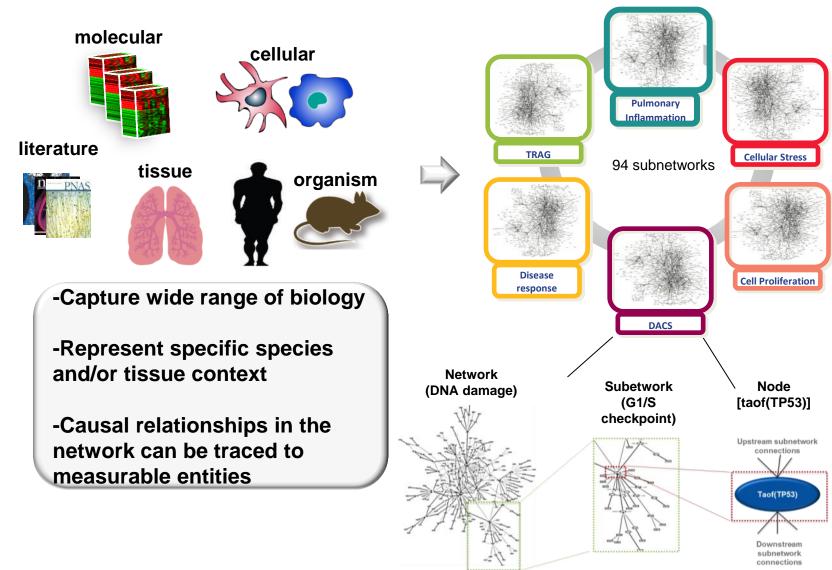
Rats and Humans Have Never Been So Close

Network Verification Challenge

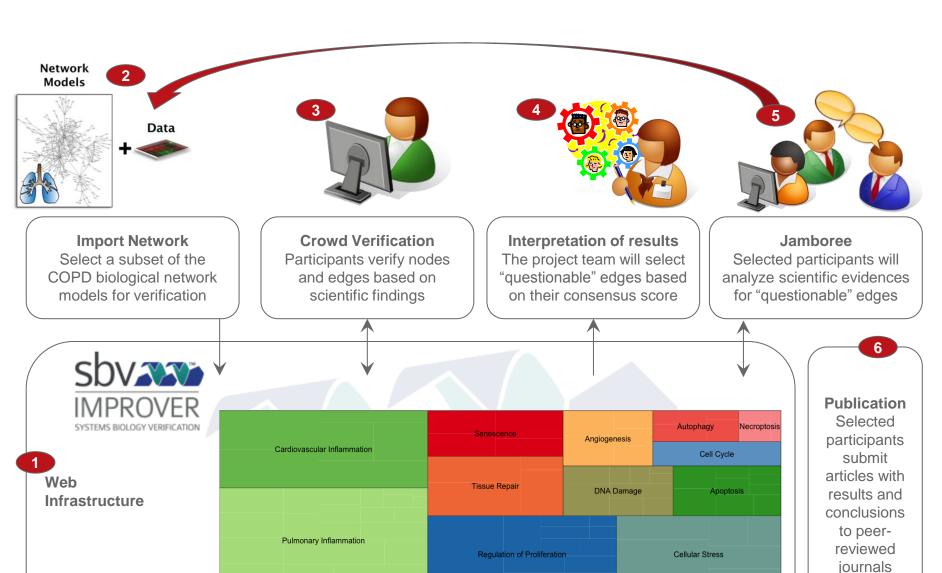


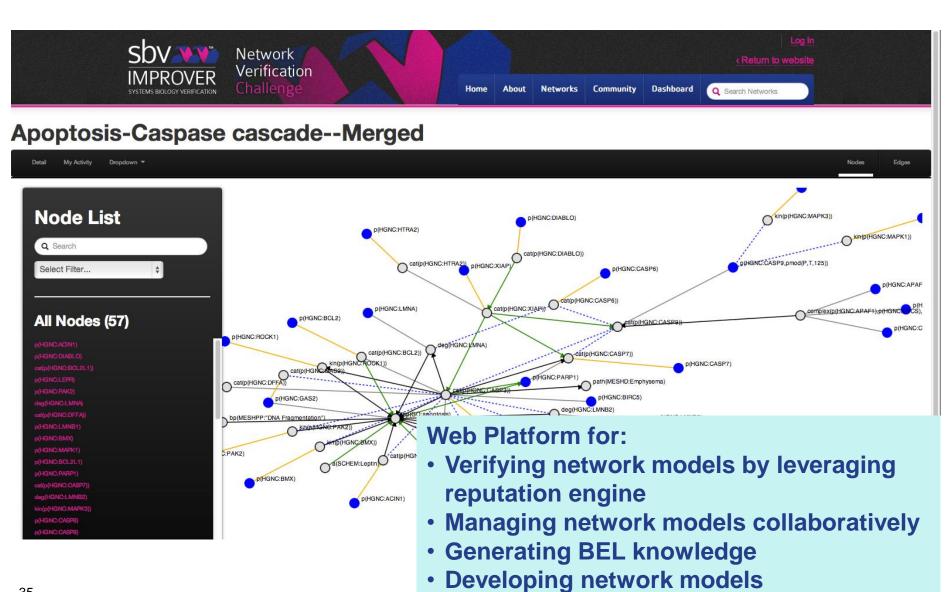
www.sbvimprover.com

Overview of Network Verification Challenge

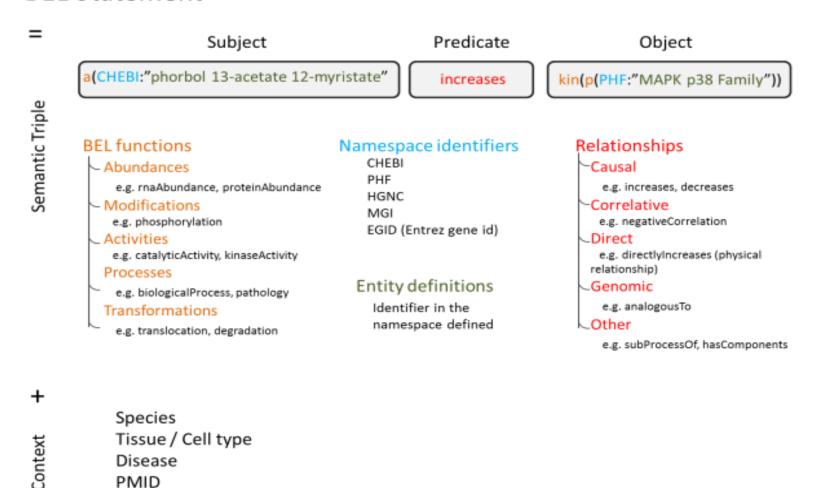


- The disparate information on molecular mechanisms of the respiratory system has been organized and captured within a coherent collection of network models.
- The purpose of the Network Verification Challenge is to engage the scientific community to review, challenge, and make corrections to the conventional wisdom
- The verified network will be used in the "COPD Grand Challenge"


Networks Contain Relevant Biology Expressed in a Causal Framework


Network Verification Challenge in a nutshell

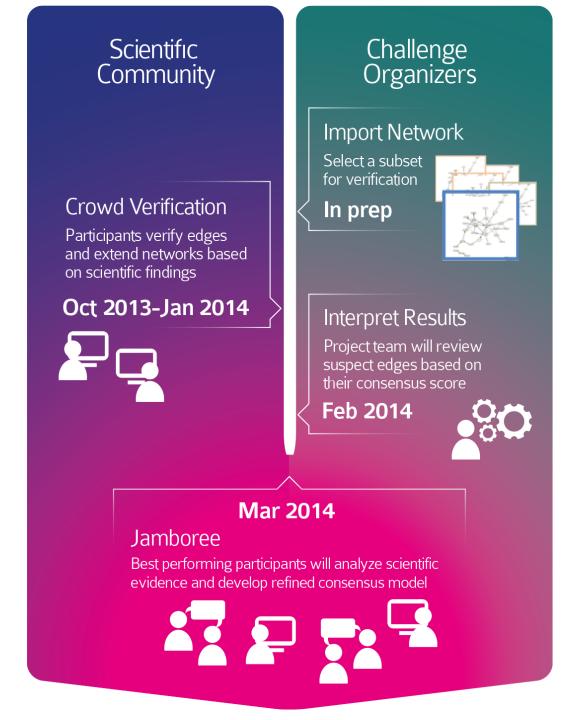
NVC Website



BEL (Biological Expression Language) Statement

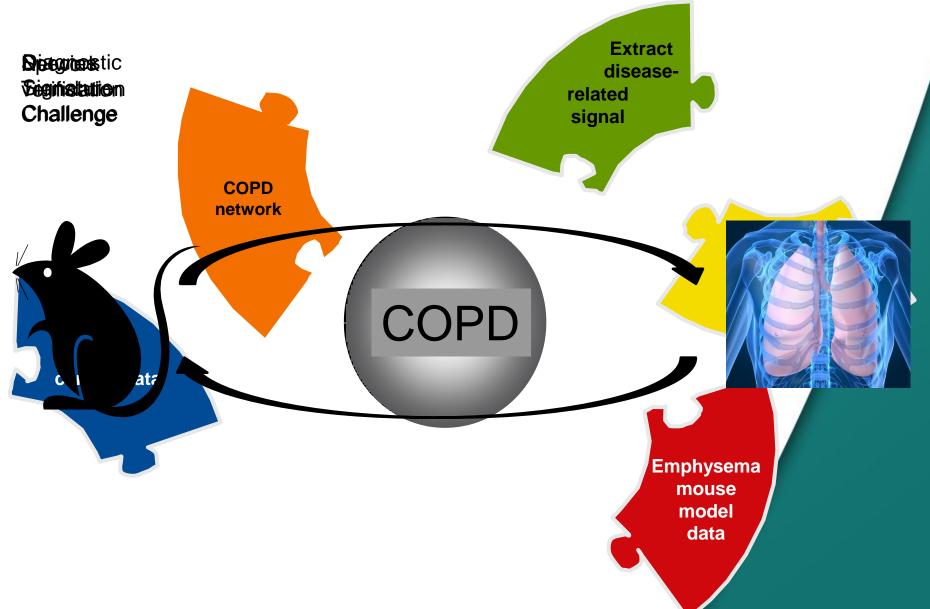
BEL Statement

Who can participate?


- Any biology researcher / student
- Researchers / students working on inflammation / lung tissues / COPD
- Researchers / students interested in pathways verification
- Researchers / students interested in applying text mining to an applied biological case

Why should you participate?

- Gain access to high quality and novel data
- Enhance your visibility and gain recognition
- Engage with peers to advance the field
- Top performers get invited to the Jamboree with travel expenses covered


Timelines

THE "GRAND CHALLENGE"

What do we want to address in the Grand Challenge?

- We want to:
 - identify indicators for onset of COPD
 - develop a comprehensive model of COPD onset
- We will have:
 - all the previously developed "puzzle" pieces
 - newly collected clinical data
 - newly collected rodent data

Clinical Endpoint Comparison to Emphysema Mouse Model

	Emphysema Mouse Model	COPD marker Identification Study
Genomics / Transcriptomics	White blood cells Nasal epithelium	White blood cells Nasal scrapes
Proteomics	Blood Bronchoalveolar lavage	Blood Sputum
Protein markers associated with inflammation	Bronchoalveolar lavage	Sputum
Cellular	Differential cell count in BALF	Differential cell count in sputum
Clinical / Symptomatic	Lung histopathology	High resolution computerized tomography, measurement of lung damage
	Full lung function	Full lung function
	Blood screening	Blood screening

Grand Challenge Summary

- Planned launch date in Q2 2014
- Leverage the "wisdom of crowds" to develop methodologies for predicting the prognostic impact of different stimuli on COPD.
- Network information verified by the Network Verification Challenge will be included as one of the inputs
- From this and the preceding challenges, we as a scientific community will better understand the biology that underlies COPD.

CURRENT SBV IMPROVER PROJECT TEAM

IBM

Ajay Royyuru

Elise Blase

Erhan Bilal

Gustavo Stolovitzky

Jeremy Rice

Kahn Rhrissorrakrai

Pablo Meyer

Raquel Norel

Alf Scotland		
Claudia Frei		
Immanuel Luhn		
Joanna Taylor		
Marianne Charaf		
Peter Curle		

Bruce O'Neil	Julia Höng
Carine Poussin	Lionel Schilli
Carole Mathis	Manuel Peitsch
Filipe Bonjour	Marja Talikka
Florian Martin	Nikolai Ivanov
Hugh Browne	Stephanie Boué
Jean Binder	Yang Xiang

PMI

External collaborators

The sbv IMPROVER project, the website and the Symposia are part of a collaborative project designed to enable scientists to learn about and contribute to the development of a new crowd sourcing method for verification of scientific data and results.

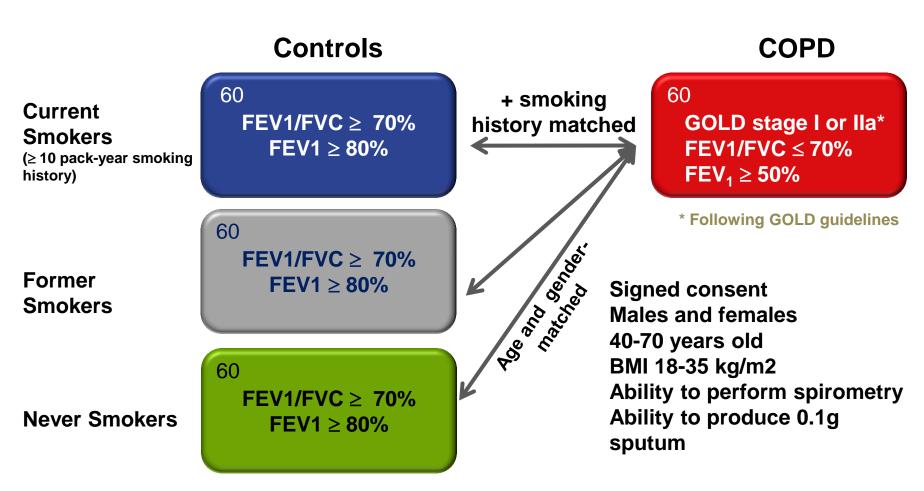
The project team includes scientists from Philip Morris International's (PMI) Research and Development department and IBM's Thomas J. Watson Research Center. The project is funded by PMI.

Protatonce

Selventa

BACK UP SLIDES

Biological Samples



Induced Sputum	Proteomics	Best representation of the inflammatory state of the small airways. Contains cells of interest and protein mediators
Whole Blood (Lymphocytes)	Transcriptomics Proteomics Lipidomics	Identify correlations with data identified from the sputum. Blood represents the ideal and most convenient matrix for large-scale biomarker measurements
Nasal fluid	Proteomics	A number of respiratory researchers have shown strong correlations between inflammation in the lung & nose. May represent a convenient matrix for large-scale studies
Nasal scrapes	Transcriptomics Proteomics	May represent a convenient matrix for large-scale studies if correlations are seen with the sputum
Nasal lavage	Transcriptomics Proteomics	May represent a convenient matrix for large-scale studies if correlations are seen with the sputum

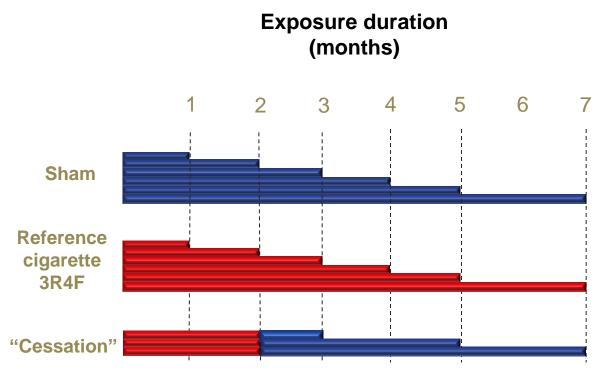
COPD Biomarker Identification Study - Design

Non-interventional, observational case-control design study conducted in the United Kingdom, and has been approved by the UK National Health Service (NHS) Ethics Committee

Biological Samples

Induced Sputum	Proteomics
Whole Blood (Lymphocytes)	Transcriptomics Proteomics

Lipidomics


Nasal fluid Proteomics

Nasal scrapes Transcriptomics
Proteomics

Nasal lavage Transcriptomics
Proteomics

Study Design and Measured Endpoints in Emphysema Mouse Model

Inflammation:

- BALF** analysis
- Differential leucocyte count in whole blood

Pulmonary function

- Flow-volume loops
- FEV0.1 ***
- Resistance, Compliance
- Elastance

Lung histopathology and morphometry

Genomics and Transcriptomics (lung, nasal epithelium, aortic arch, liver, blood)

Lipidomics (lung, liver, aorta, blood)

^{**} BALF: bronchoalveolar lavage fluid

^{***} FEV0.1 forced expiratory volume in 0.1s