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Biology is mechanistically captured by the 
molecular entities (backbone) of the model through 
“cause-and-effect” edges. 
The nodes represent molecular entities such as 
catalytic activity of the protein IL1R1 (expressed in 
BEL language, catof(IL1R1)). 
 
Gene expressions are experimental evidences for 
the activation of some nodes of the backbone. 

 
 

 

Measurable layer 

Functional Layer 

Use differential effects (β) for each gene 
underlying the network model (>1000), β as 
boundary condition in the following optimization 
problem: 

«CAUSE-AND-EFFECT»  
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      Significance of the score with respect to 
biological variability; 
 
O + K: Additional companion statistics 
(permutation tests) indicating if the biology 
described by the model is specifically 
perturbed. 

Network Perturbation 
Shape 

The solution is given as a linear transform of 
the boundary conditions, using the signed  
Laplacian of the graph. 
 
NPA is the total graph “energy” of the solution:  
 

Network Perturbation  
Amplitude (NPA) 

NPA Companion Statistics 

Each mechanism is scored in the context of the 
network and the most contributing nodes are 
identified as leading nodes. The leading nodes 
are central nodes in the network, accounting 
for up to 80% of the NPA score.  

High-throughput profiling of gene expression has opened new avenues for the understanding of biological processes at the molecular 
level. However, the amount of information collected can be overwhelming, making interpretation of the data difficult and subsequent 
detailed biological understanding elusive. Reducing the complexity of such data by evaluating them in a relevant biological context is 
required to gain meaningful insight. We propose that “cause-and-effect” network approaches to pharmacology and toxicology are valuable 
to quantify network perturbations caused by  bio-active substances, and to identify mechanisms and biomarkers modulated in response to 
exposure [1]. The underlying concept is that transcriptional changes are the consequences of the  biological processes described in the 
network. We have recently built an ensemble of network models that consist of cause and- effect relationships (typically activation or 
inhibition) between molecular entities and activities (e.g., kinase activation or increased protein abundance)[2-6]. The description of the 
biological context has been  manually built into the network models using prior knowledge extracted from both relevant literature and 
published  datasets after a large-scale knowledge mining effort.  

Use case : Smoking cessation study using the C57/BL6 emphysema model 

Leading Nodes 

Background Chronic Obstructive Pulmonary Disease (COPD) is one of the leading causes of chronic morbidity and mortality in the world. 
C57/Bl6 mice exposed to cigarette smoke (CS) provide valuable insight into emphysema initiation and progression, although this mimics 
only some aspects of early human COPD, characterized by reduced lung function, abnormal inflammatory response in the airways, small 
airway remodeling, and the destruction of lung alveolar tissue.  Previously, we have applied our mechanism-based systems toxicology 
strategy to gain mechanistic insights and quantify the activation of various biological processes in the lungs from smoke-exposed mice 
[10]. 

The hierarchical structure of the network models offers mechanistic understanding on the biological impact of the CS 
exposure, revealing multiple network models, subnetworks and nodes, whose  NPA scores are consistent with measured 
experimental endpoints. Moreover, even when there is no phenotypic information available, network scoring provides 
valuable mechanistic insight and a testable hypothesis.  

Cigarette smoke is known to affect the cell cycle, but its role is not clear in emphysema development. Some of the mechanisms 
identified here might shed light into the cell cycle processes that are involved in emphysema development and recovery in the 
mouse model of COPD. 

Some network nodes are also related to mRNA abundance entities that they positively or negatively regulate. Thus, our biological 
network models have a two-layer structure, where the functional level is explicitly distinguished from the transcriptional level. Using 
transcriptional  downstream effects to infer the activity of upstream entities is advantageous, because the activity of a node is inferred 
based on the differential expression of many genes known to be regulated by a given entity, even the ones encoding proteins with 
unknown functions. This is unlike the networks derived from other pathway databases, which rely upon the “forward assumption” 
stating that changes in gene expression induce changes in the activity and abundance of the gene product. 

We present a novel framework for the quantification of the amplitude of network perturbations, which enable comparisons between 
different exposures and systems [7-9]. Also, our approach enables quantification of each biological entity (nodes) in the network, 
among which key contributors, referred to as leading nodes, can be identified to unravel biological mechanisms. As a conclusion, it 
efficiently integrates transcriptomics data and network models to enable a mathematically coherent framework from  quantitative 
impact assessment to data interpretation and mechanistic hypothesis generation. 

Differential  gene expression 
data e.g., estimated contrast 
of interest, or difference 
between individual patient 
profile and the average 
population. 
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Figure 3. Computation of NPA  for processes related to cell proliferation and comparison to growth factors measurement in BALF (available 
at 3 and 7 month). 

Figure 2 The comparison of  the perturbation of two subnetworks within the cellular stress network, xenobiotic metabolism response 
oxidative stress and NFE2L2 signaling, across the treatment regimens. 

Figure 1 We computed NPA’s for the Pulmonary Inflammatory Processes Network (IPN), Cell Proliferation Network , Cell Stress Network 
and the networks that constitute the DNA damage, Autophagy, Cell death (apoptosis and necroptosis) and Senescence Network (DACS). 
The starplots show a summary of the NPAs of lungs from CS-exposed versus sham-exposed mice at each time point. Only *O*K* 
networks are displayed and aggregated by biological processes. The outer starplot is relative to the corresponding inner segment. 

The impact of CS on biological processes in the lung is increased over month of CS exposure and is significantly decreased 
after cessation. Similar to endpoints related to lung function and pathology, the extent of impact depends on both the 
duration of smoke exposure and length of cessation.  

Xenobiotic metabolism , Oxidative stress and NFE2L2 signaling networks show CS induced perturbation that is released 
upon smoking cessation.  

Figure 4. (A) Activation of cell cycle submodel within 
the cell proliferation network [4]. This subnetwork has 
been carefully verified to reflect the correct biology with 
a tailor-made dataset that reflects the activation of the 
cell cycle after arrest to G1 phase [12]. (B) To identify the 
network model entities that are the most important to 
define the difference between CS exposed and sham 
animals, we have compared the leading nodes across the 
exposure regimens (1 through 7 months). Leading nodes 
are highlighted (red if the node is up regulated, and 
black if it is down regulated). 
 

Several nodes were important after both short and long CS exposures as well as after cessation. Many leading nodes that 
disappear with prolonged exposure are linked to S-phase entry (red arrows) and the leading nodes that persist in all 
exposure scenarios are more related to G2 phase of the cell cycle (blue arrows). Interestingly, while the overall 
perturbation of cell cycle after cessation is low as compared to 7 month exposure (A), the leading nodes that persist are 
essentially the same (B). As a conclusion, leading node investigation enables a detailed understanding of the perturbation. 

The growth factor subnetwork is clearly perturbed following CS exposure and released from perturbation upon smoking 
cessation (A). Broncho Alveolar Lavage Fluid (BALF) concentrations for bFGF is similarly altered in CS exposed mice (B). 
The Vegfa node in the network follows the same trend as the analyte level in the BALF, being most affected at 7 months 
of exposure (C). On the other hand, Egf signalling shows no consistent behaviour at the network node level (E) and 
similarly, the protein measured in BALF fails to serve as a marker for disease progression/reversal (F). 
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The cell cycle network  is more perturbed at 3 
months as compared to 7 months of CS exposure  
and the perturbation is decreased upon smoking 
cessation. 
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Objective We have used transcriptomic data from mice exposed to mainstream CS for 3, 5 and 7 months as well as data after 3 months of 
smoke exposure followed by a cessation period of 2 month and 4 months, respectively. Similar to the findings from a study by Beckett et 
al. [11], the mice developed emphysema in the lungs after just 3 months of CS exposure (M. Peck et al., unpublished), characterized by 
lung morphometry and histopathological analysis.   
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Month 1 2 3 5 7 

Whole lung samples were collected 
from 8 mice for each Month x Arm 
 
Study Arms: 
Sham 
CS 
CS + Sham (Cessation) 
 

CS (3m) CS (5m) CS (7m) CS (3m)+Sham (2m) CS (3m)+Sham (4m) 

Where V is the set of nodes, and V0 the nodes of 
the measurable layer 
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