

PMI RESEARCH & DEVELOPMENT

#### **Genomics and Bioinformatics of Lung Diseases**

Dr. Nikolai V. Ivanov

Manager, Genomics Research & Technology

on behalf of

**Biological Systems Research Department** 

April 25-27th, 2013

- Lung Cancer, CVD and COPD
- Chronic obstructive pulmonary disease (COPD) is the 5<sup>th</sup> leading cause of death worldwide and cigarette smoking is the main cause of COPD
- Main features of COPD
  - Lung Inflammation, Chronic Bronchitis and Bronchiolitis
  - Lung Emphysema





1: Healthy Alveoli

www.lung.ca/.../emphysema-emphyseme/index\_e.php



afarewellrescue.com

<sup>2:</sup> Emphysematous Alveoli

# Background

 Human (Kohansal et al 2009) and animal experimental data (Milot J et al 2007; Wright JL et al 1994, 2006) suggest that lung can repair smokeinduced damage for some period before it eventually loses this ability to repair





- The objectives of COPD studies are
  - To establish C57BL/6 as a mouse model of cigarette smoke-induced COPD
  - To explore the impact of exposure to 3R4F on the onset and the development of COPD in C57BL/6 mice
  - To explore the impact of smoking cessation on the recovery of COPD in C57BL/6 mice
  - To determine the time point that animals start to develop irreversible emphysema
  - To assess the impact of smoking exposure and smoking cessation on the development of COPD based on whole genome gene expression profile.
  - Understand the underlying molecular mechanisms perturbed by smoke and smoking cessation



# **Study Design - Exposure Groups and Duration**



### Study Design – Experimental Set up



- Strain: Female C57Bl/6 mice
- Mainstream smoke from the Kentucky reference cigarette 3R4F; exposure: 750 µg total particulate matter (TPM)/L, 4 hours/day, 5 days/week
- Total duration of the study: 7 months

#### **Stable Aerosol Generation**

Smoke Uptake by Mice

#### End Points:

- Inflammation markers in bronchoalveolar lavage fluid (BALF)
- Lung Function Tests
- Histopathological/Morphometric Changes in the lung
- Gene Expression Profile for whole lung and nasal epithelium.



# **Lung Inflammation - BALF**

Bronchoalveolar Lavage Fluid (BALF) Cells



**Exposure Duration (month)** 

#### --- Smoke Exposed Group

- --- Cessation1 (Smoke 2m + Cessation)
- --- Cessation2 (Smoke 3m + Cessation)
- Cessation3 (Smoke 4m + Cessation)

Animal number per group : 9 -10 mice

# **Emphysema: Lung Function**

#### Pressure-Volume Loop – Inhalation Curve



#### 7 Months Exposure



# **Emphysema: Histopathology/Morphometry**

#### Lung Morphometry after 7 Months of Exposure



Fresh Air Group

Smoke Exposed Group

Cessation Group (Smoke 2m + Cessation 5m)



#### Network Biology for Systems Toxicology and Biomarker Discovery





# New Paradigm in Toxicity Testing in the 21st Century



2007 – National Academy of Sciences, issued a landmark report "Toxicity Testing in the 21st Century: A Vision and Strategy"

**Vision:** Move away from evaluating apical health endpoints in animals - turn toward identification of toxicity pathways in *in-vitro* test systems

#### Transformative change in toxicity testing

- to achieve testing of broad coverage of chemicals, mixtures, outcomes and life stages
- to significantly increase human relevance
- to reduce the cost and time required to conduct chemical safety assessments
- to reduce and potentially eliminate high-dose animal testing

Adapted from: *Toxicity Testing in the Twenty-first Century: A Vision and a Strategy.* The Board on Environmental Studies and Toxicology http://nationalacademies.org/best.







Hoeng J, Deehan R, Pratt D, Martin F, Sewer A, Thomson TM, Drubin DA, Waters CA, de Graaf D, and Peitsch MC. A network-based approach to quantifying the impact of biologically active substances. *Drug Discov Today* 17: 413-418, 2012.







Hoeng J, Deehan R, Pratt D, Martin F, Sewer A, Thomson TM, Drubin DA, Waters CA, de Graaf D, and Peitsch MC. A network-based approach to quantifying the impact of biologically active substances. *Drug Discov Today* 17: 413-418, 2012.



### **Construction of BEL Encoded Network Models**





### How Do We Use Transcriptomic Data?



Martin F, Thomson TM, Sewer A, Drubin DA, Mathis C, Weisensee D, Pratt D, Hoeng J, and Peitsch MC. Assessment of network perturbation amplitude by applying high-throughput data to causal biological networks. *BMC Syst Biol* 6: 54, 2012 PMI RESEARCH & DEVELOPMENT

### **Knowledgebase Model Properties**



Capture wide range of biology



#### **Hierarchal structure**



Updatable

# Quantitative Mechanism-Based Systems Impact Assessment Build and Maintain Biological Networks





### **Relevant Biological Network Models**







3637 unique scorable measurements

- **Cell Proliferation** 
  - Represents growth factor signaling pathways and cell cycle regulation
  - Data includes measured phenotype
- Inflammation
  - Represents cytokine signaling to NFKB and AP-1 activation
  - No quantified phenotype associated with data



## DNA Damage Subnetworks in Selventa Knowledgebase



Components affecting TP53 activity



DNA damage to G2/M checkpoint



Single Strand Break Response



Components affecting TP63 activity



Double Strand Break Response



TP53 Transcriptional Signature



Components affecting TP73 activity



DNA damage to G1/S checkpoint





Inhibition of DNA repair

NER/XP pathway

Using Selventa Knowledgebase®<sup>1</sup>, a repository containing cause-and-effect relationships extracted from 35000 PMIDs, one can assemble networks as models of biological mechanism within clearly defined boundaries

1. Selventa, http://selventa.com/





Martin F, Thomson TM, Sewer A, Drubin DA, Mathis C, Weisensee D, Pratt D, Hoeng J, and Peitsch MC. Assessment of network perturbation amplitude by applying high-throughput data to causal biological networks. *BMC Syst Biol* 6: 54, 2012



### How Do We Use Transcriptomic Data?



Martin F, Thomson TM, Sewer A, Drubin DA, Mathis C, Weisensee D, Pratt D, Hoeng J, and Peitsch MC. Assessment of network perturbation amplitude by applying high-throughput data to causal biological networks. *BMC Syst Biol* 6: 54, 2012 PMI RESEARCH & DEVELOPMENT

#### NPA for Biological Impact Assessment and Mechanistic Interpretation



- Assessment of Network Perturbation Amplitude by Applying High-Throughput Data to Causal Biological Networks, Martin et al., BMC Syst Biol. 2012 May 31;6:54.
- Quantification of biological network perturbations: Impact assessment and diagnostic using causal biological networks, Martin et al., In preparation.
  - A network-based approach to quantifying the impact of biologically active substances, Hoeng et al., Drug Discov Today. 2012 May;17(9-10):413-8.







#### **Summary of the Computational Process**



### **Study Design - Exposure Groups and Duration**





### **Differential Gene Expression Regulation in Lung**



# **Biological Impact Factors (BIF's)**



#### **Evolution of NPA in 3R4F and Cessation Exposure Type Regimens over Time -** *Cell Oxidative Stress Network*





#### **Evolution of NPA in 3R4F and Cessation Exposure Type Regimens over Time -** *IPN/Macrophage activation Network*





Consistent Trends between Network Models (primary tissue) & BALF (surrogate measurements)



Julia Hoeng, Marja Talikka, Florian Martin; Alain Sewer, Xiang Yang, Anita Iskandar, Walter Schlage, Manuel C. Peitsch Case Study: The Role of Mechanistic Network Models in Systems Toxicology (manuscript submitted).



### NPA Scores Indicate Residual Signaling in Primary Tissue (Lung)



# **New Technologies**



#### High-throughput sequencing





#### The Affymetrix Gene Expression and Illumina Sequencing Platforms

|                        | Affymetrix Chip                                        | Illumina RNA-seq                                                   |
|------------------------|--------------------------------------------------------|--------------------------------------------------------------------|
| Technology             | Gene-centric<br>(limited to genes present on the chip) | Sequence-centric (genes, transcript isoforms,)                     |
| Measured datapoints    | ~30'000                                                | Unlimited                                                          |
| Time to generate data  | ~3 days                                                | ~14 days                                                           |
| Samples per run        | 96                                                     | Typical: 4 samples*16 lanes = 64<br>Max: 12 samples*16 lanes = 192 |
| Analysis methods       | Standardized<br>Well-established                       | In development                                                     |
| Data storage footprint | Low (Mb)                                               | High (Gb)                                                          |
|                        |                                                        |                                                                    |



### Future Developments ...





# Summary

- Obvious lung emphysema was observed by histopathological/morphometric analysis after 2 months of mainstream cigarette smoke exposure.
- Mainstream cigarette smoke exposure cessation reverses the effects of inflammation, lung function changes and histopathological/morphometric changes.
- A strong inflammation component was observed from the gene expression profile followed by senescence and DNA damage. The molecular changes are supported by the biological endpoints.
- PMI computational method based on mechanistic networks enables us to identify the key biological processes involved.
- New technologies (e.g. Next Generation Sequencing and Mass Spectroscopy Proteomics) would allow us to evaluate the effects of cigarette smoke exposure and cessation at the DNA and protein levels.



# Acknowledgement

#### Selventa-USA

Jurjen W. Westra Michael J. Maria David de Graaf Renée Deehan Dexter Pratt Ty M. Thomson, David A. Drubin Andrea L. Mathews

#### PMIRL-Singapore

Magali Russell Shen Yi Jan Verbeeck Blaine Phillips Didier Goedertier Clement Foong Teo Hutt Wang Woon Ching Qing Eric Yew Chor Kiat Yeo

#### PMI R&D Switzerland

Manuel C. Peitsch Julia Hoeng Marja Talikka Patrick Vanscheeuwijck **Nveed Chaudhary** Emilija Veljkovic Michael Peck Florian Martin Yang Xiang Grégory Vuillaume Stefan Lebrun Carine Poussin **Carole Mathis** Sandra Wagner Ulrike Kogel Walter Schlage Vincenzo Belcastro Alain Sewer Sam Ansari



# **Thank You**

