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Background

Goals

controlled aerosol generation from oversaturated vapors

understand formation and evolution of aerosols

identify parameters which influence physical/chemical aerosol
characteristics at given conditions

develop numerical methods for prediction of aerosol behavior

Main challenges

vapor: multi-species mixtures

aerosol: small droplets at high density

flow: unsteady and density-varying (large temperature gradients)
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CFD approach

Flow modeling

low-Mach number approach

in-house code based on OpenFOAM R©: numerics & parallelization

collocated mesh with PISO pressure-velocity coupling

Aerosol modeling

Euler-Euler approach (one-way coupling)

homogeneous nucleation

condenstation/evaporation

coalescence
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Aerosol modeling

Development approach

aerosol formation: single-species1 =⇒ multi-species2

validation: pipe flow3 =⇒ backward-facing step

accuracy: PISO extension, TVD schemes, space-time
refinement4,5

References
1 Efficient second-order time integration for single-species aerosol formation and evolution, C.

Winkelmann, M. Nordlund, A.K. Kuczaj, S. Stolz, B.J. Geurts, International Journal for
Numerical Methods in Fluids, 74 (5), 2014

2 Multispecies aerosol formation due to rapid cooling of alcohol mixtures, C. Winkelmann, A.K.
Kuczaj, M. Nordlund, B.J. Geurts, submitted to JAS

3 Extension of compressible PISO algorithm to single-species aerosol formation and transport,
E.M.A. Frederix, M. Stanic, A.K. Kuczaj, M. Nordlund, B.J. Geurts, to be submitted

4 Capturing aerosol droplet nucleation and condensation bursts using PISO and TVD schemes,
E.M.A. Frederix, A.K. Kuczaj, M. Nordlund, B.J. Geurts, this conference

5 Solution-adaptive space-time refinement for multispecies aerosol formation, B.J. Geurts, E.M.A.
Frederix, A.K. Kuczaj, M. Nordlund, this conference
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Multispecies flow dynamics

Navier-Stokes flow:

∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρuu) = −∇p +∇ · (µτ )

cp∂t(ρT ) + cp∇ · (ρTu) = ∇ · (k∇T ) + µτ (∇u) + Dtp + Sh

∂t(ρYi ) +∇ · (ρYiu) = ∇ · (ρDi∇Yi ) + S l→v
i ; i = 1, . . . , n

∂t(ρZi ) +∇ · (ρZiu) = −S l→v
i

∂tN +∇ · (Nu) = SN

Assumptions:
Mass fractions in gas Yi and liquid Zi state:

∑n
i=1 (Yi + Zi ) = 1

Dalton law for partial pressures of ideal gas: p =
∑n

i=1 pvi ; pvi = ρkT
Yi
mi

(mi - molecular mass of species)

Soret, Dufour effects and diffusion of liquid droplets excluded

Binary diffusion with Fick law and Fuller method to approximate diffusion constant Di

Aerosol droplet density N with fixed mean log-normal distribution

A.K. Kuczaj et al. (PMI R&D, UT ) Influence of mixing and cooling on aerosol July 2014 6 / 19



Aerosol formation and evolution

Multispecies aerosol dynamics

Heat flow rate due to phase change (l→v) related to heat of
evaporation:
Sh = −

∑n
i=1 ∆hvapi S l→v

i

Liquid-vapor mass transfer due to nucleation, evaporation and
condensation:
S l→v
i = −Snuc

i + Se−c
i

Rate of change of droplet density number due to nucleation,
coalescence and evaporation:
SN = JN − Jc − Jev

A.K. Kuczaj et al. (PMI R&D, UT ) Influence of mixing and cooling on aerosol July 2014 7 / 19



Homogeneous nucleation

Classical nucleation theory

Nucleation mass flow rate based on nucleation rate JN of molecules number
Ni with mass twice that of the critical cluster:
Snuc
i = 2JNNimi

Nucleation rate JN = RavZceq: average growth rate × Zeldovich factor ×
equilibrium concentration

Average growth rate Rav based on the condensation rate (Ref. [1]) extended
for multispecies mixture

Zeldovich factor Z characterizes contribution of Brownian motion to the
formation of critical cluster (Ref. [1])

Equilibrium concentration of critical cluster (related to Gibbs free energy
barrier to form an interface at the boundaries of a new phase) takes into
account ’self-consistent’ normalization (Ref. [2])

References:
1 H. Arstila, P. Korhonen, M. Kulmala, Ternary nucleation: kinetics and application to

water-ammonia-hydrochloric acid system, Journal of Aerosol Science, 30, 1999

2 G. Wilemski, B. Wyslouzil, Binary nucleation kinetics, I. Self-consistent size distribution, J.
Chem. Phys. 103, 1995
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Condensation-evaporation

Mass flow rate due to evaporation/condensation Se−c
i

Separate treatment for each component (Ref. [1]):

Se−c
i = 2πDidρY

s
i f (d , λ)

(
Ei − Si

Wi

)
N

f (d , λ) - Fuchs factor (Knudsen correction) (Ref. [2])

d - count mean diameter computed from diameter of average mass
through Hatch-Choate conversion equation (Ref. [2])

Ei - equilibrium saturation takes into account Kelvin effect (Ref. [3])

Si , Wi - saturation of species and mole fraction in the liquid phase
(Raoult’s law used)

References:

1 S. Friedlander, Smoke, Dust and Haze, Wiley, New York, 1977

2 W. Hinds, Aerosol Technology, Wiley-Interscience, New York, 1999

3 M. Wilck, F. Stratmann, A 2-D multicomponent modal aerosol model and its application to
laminar flow reactors, Journal of Aerosol Science, 28, 1997
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Rate of change of droplet density number
SN = JN − Jc − Jev

Coalescence rate Jc

Binary collision mechanism: Jc = KN2

Proportionality coefficient K based on the theory for polydisperse
aerosols (Ref. [1])

Evaporation rate Jev

Complete droplets evaporation based on the consideration of mass
balance

Critical droplet diameter is computed

Based on log-normal distribution, the droplets with size smaller than
critical diameter are eliminated

References:

1 K. Lee, H. Chen, Coagulation rate for polydisperse particles, Aerosol Science and Technology, 3,
1984
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Single-species aerosol model validation

Laminar flow diffusion chamber (LFDC)
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Backward-facing step flow

Motivaton

Canonical flow case

Wide range of application:
laminar-transition-turbulent

More complex flow than in
laminar flow diffusion
chamber

Shear layer - mixing layer:
various ways to utilize

Mixing (geometry, Re) and
cooling (wall temperature)
can be studied

Flow behavior

T.P. Chiang, T.W.H. Sheu, C.C. Fang, Numerical
investigation of vortical evolution in a backward-facing step
expansion flow, Applied Mathematical Modeling, 23, 1999

B.F. Armaly, F. Durst, J.C.F. Pereira, B. Schoenung,
Experimental and theoretical investigation of
backward-facing step, J. Fluid Mech., 127, 1983
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Backward-facing step

inlet

outlet
Um,Tm, Y0

-
adiabatic wall

cooling wall: Tw-6
z h

x

Re = ρUmh
µ

Domain length based on the highest computed Re (4× x1)

Vapor mixture at saturated conditions at inlet

Cooling wall Tw set constant

Step-wall and upper wall with adiabatic conditions

Laminar flow profile at the inlet
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Flow - Re = 100 (top), 500, 1000, 1500 (bottom)

Velocity magnitude: |u|/Um Vertical velocity: uz/Um
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Temperature and vapor mass fraction

Temperature: T/(Tm − Tw ) Vapor mass fraction: Y /Y0
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Liquid mass fraction and droplet density number

Liquid mass fraction: Z/Y0 Droplet density number: N
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Nucleation and condensation/evaporation rate

Droplet nucleation rate Condensation/evaporation rate
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Quantification - example

Droplet number density profile at
x = 6h

Mass fraction of gas species profile
at x = 6h
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Summary

Multispecies aerosol model in Euler-Euler framework developed

Backward-facing step adopted for study of aerosol formation and
evolution

Quantification of aerosol formation and evolution possible
(droplet number density, droplet size, amount of vapors turned
into liquid droplets

Future: Extensive parameter study for benchmarking the system
at various conditions

Research presented here was financially supported by Philip Morris
Products S.A.
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