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Introduction
Understanding the physical conditions governing deposition of
aerosol droplets and its influence on the cell functioning is a key
step towards the ultimate goal to relate the exposure of inhaled and
deposited aerosols to health outcomes. This is important two-fold,
i.e., the same physical mechanisms are acting in much more com-
plex geometries (e.g., human airways), and simultaneously acquired
knowledge allows for improved in-vitro inhalation toxicology experi-
ments. Evaluation of flow and aerosol dynamics together with aerosol
deposition in the in-vitro exposure system is presented here.

Schematic drawing

Representative geometry for single row

Flow assessment in the dilution/distribution unit
Direct Numerical Simulations (DNS) for various flow rates (Reynolds
numbers) for the aerosol inlet and dilution legs performed in the
dilution/distribution unit representative for the exposure system.

• Jet-mixing regime for efficient turbulent mixing guar-
anteed by double mixing tee configuration

• Flow laminarization depending on Reynolds number
for considered flow rates (3-12L/min)

Validation of computational approach
Developed compressible low-Mach Navier-Stokes aerosol drift-flux
OpenFOAM® solver ([1, 3]) validated for pipe geometry flow by com-
parison with DNS results (boundary Reynolds number Reτ = 180).

Extruded polyhedral mesh and snapshot of velocity magnitude:

Comparison of in-house results with Direct Numerical Simulations
by Kasagi [2] for the mean flow and r.m.s. velocity fluctuations:

Mixing in the dilution unit
Turbulent flow (left) and mixing of passive scalar (right) for 12L/min
flow with 3L/min aerosol inlet and 4.5L/min air inlets flow rate:

Mixing uniformity for 12L/min flow with 1.5L/min (left) versus
4.5L/min (right) air inlet flow rates at a cross-section prior to the
first trumpet inlet:

• Mixing uniformity is controlled by equipartitioning
of flow rates between inlets

Aerosol flow in delivery system

Axi-symmetric representa-
tion of trumpet geometry
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d̄ = 0.2µm - impaction+settling

d̄ = 0.2µm - impaction

d̄ = 0.4µm - impaction+settling

d̄ = 0.4µm - impaction

Deposition of two different aerosol
mean particle sizes d̄ taking into
account impaction and gravita-
tional settling for four various flow
rates

Conclusions
• Aerosol mixing and uniformity in the exposure system can be

controlled via proper adjustments of flow rates

• Developed computational framework allows for accurate com-
putations of aerosol flow and deposition in exposure systems

• Future: application of developed platform for complete evalu-
ation of in-vitro exposure studies
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