Modeling transport and evolution of aerosols for accurate predictions of local deposition in an in-vitro exposure system

A.K. Kuczaj^{1,2}, M. Nordlund¹, S. Majeed¹, S. Frentzel¹, M.C. Peitsch¹, and J. Hoeng¹

¹Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland ²Multiscale Modeling and Simulation, Faculty EEMCS, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Introduction

Understanding the physical conditions governing deposition of aerosol droplets and its influence on the cell functioning is a key step towards the ultimate goal to relate the exposure of inhaled and deposited aerosols to health outcomes. This is important two-fold, i.e., the same physical mechanisms are acting in much more complex geometries (e.g., human airways), and simultaneously acquired knowledge allows for improved in-vitro inhalation toxicology experiments. Evaluation of flow and aerosol dynamics together with aerosol deposition in the in-vitro exposure system is presented here.

Flow assessment in the dilution/distribution unit

Direct Numerical Simulations (DNS) for various flow rates (Reynolds numbers) for the aerosol inlet and dilution legs performed in the dilution/distribution unit representative for the exposure system.

	0.75 L/min		0	L
1.5 L/min	jet-mixing flow laminarization 0.75 L/min			
			0	U 0.03

- Jet-mixing regime for efficient turbulent mixing guaranteed by double mixing tee configuration
- Flow laminarization depending on Reynolds number for considered flow rates (3-12L/min)

Validation of computational approach

Developed compressible low-Mach Navier-Stokes aerosol drift-flux OpenFOAM[®] solver ([1, 3]) validated for pipe geometry flow by comparison with DNS results (boundary Reynolds number $Re_{\tau} = 180$).

Extruded polyhedral mesh and snapshot of velocity magnitude:

first trumpet inlet:

• Mixing uniformity is controlled by equipartitioning of flow rates between inlets

Aerosol flow in delivery system

Deposition of two different aerosol mean particle sizes \overline{d} taking into account impaction and gravitational settling for four various flow rates

Conclusions

• Aerosol mixing and uniformity in the exposure system can be controlled via proper adjustments of flow rates

• Developed computational framework allows for accurate computations of aerosol flow and deposition in exposure systems

• Future: application of developed platform for complete evalu-

References

[1] E.M.A. Frederix, M. Stanic, A.K. Kuczaj, M. Nordlund, and B.J. Geurts. Extension of the compressible PISO algorithm to single-species aerosol formation and transport. International Journal of Multiphase Flow, Submitted,

[2] K. Fukugata and N. Kasagi. Highly energy-conservative finite difference method for the cylindrical coordinate system. Journal of Computational

[3] Ch. Winkelmann, M. Nordlund, A.K. Kuczaj, S. Stolz, and B.J. Geurts. Efficient second-order time integration for single-species aerosol formation and evolution. International Journal for Numerical Methods in Fluids, 74(5),

Acknowledgements: The research presented in this poster was financially supported by Philip Morris Products S.A. The authors wish to thank Vitrocell[®] Systems GmbH for delivering geometry of the exposure system.