Computer-Assisted Structure Identification (CASI) for high-throughput identification of small molecules using GC×GC-HRAM-TOFMS high-resolution accurate mass spectrometry

Overview and Objective

Compound identification is a major bottleneck for modern metabolomics approaches and high-throughput, non-targeted characterization of complex matrices.

- Computer-assisted Structure Identification (CASI)^[1] accelerates and standardizes the identification of compound structures using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) and unit mass resolution electron ionization mass spectra.
- GC×GC coupled with accurate mass spectrometry is a promising approach for further increasing the confidence for structural proposals derived from CASI.
- Objective of the presented work is to develop and integrate such an approach into an automated workflow, key to handle the vast amount of data produced from complex samples successfully.

Methods

Smoke samples from the 3R4F reference cigarette ^[2] and aerosol samples from a heat-not-burn product, the Tobacco Heating System (THS) 2.2, commercialized as IQOS[®], have been analyzed by GC×GC-TOFMS (Pegasus® IV, LECO) and GC×GC-HRAM-TOFMS (Pegasus® GC-HRT 4D, LECO)^[3]. Unit mass resolved data were processed using a non-targeted workflow for in-depth chemical characterization. Structural proposals for the complete dataset were derived from CASI, considering mass spectral database matching, matching of chromatographic data to QSPR* derived prediction models for 1st and 2nd dimension separations and boiling point, and ranks proposals according to a scoring function^[4]. A workflow utilizing accurate mass electron ionization (EI) spectra combined with the existing CASI workflow has been designed to increase the confidence for structural proposals.

- Experimentally derived accurate mass spectra are compared with the output from in silico fragmentation of candidate structures proposed by the CASI platform using unit resolution MS data.
- ACD/MS Fragmenter^[5] software applies in-built fragmentation rules to the structural features of the proposed candidates in order to reconstitute a theoretical accurate mass spectrum.
- The reconstituted mass spectrum is then compared with the experimental accurate mass spectrum using NIST MS Search v.2.3^[6].
- The resulting spectral 'FIT' is termed 'Accurate Fragmentation Score' and is linked directly to the proportion of determined fragment ions matching those predicted for the candidate structure. • A linear combination of Accurate Fragmentation Score and CASI_{nominal} Score is used to strengthen the candidate selection process and further increase the confidence for CASI-derived structural proposals. * QSPR: Quantitative Structure-Property Relationship

Structures **GROUP 3** 25% -Hvdroxymethylfurfu irmed by ref. s ethyl 2-furoat of wrong Hits Acetylpyrrole **GROUP 2** firmed by ref. s 29% ethyl pyruva med by ref. s irmed by ref. sto Confirmed by ref. sto 🛛 GROUP 2 🛛 GROUP 1 ination NIST MF / CASInominal sufficient Cluster of isomers **GROUP** anoic acid, 2-meth o additiona -Methylpyrazine onfirmed by ref. std. benefit compared to NIST MF / 912 897 909 Neophytadiene nfirmed by ref. s (Group 1, 2, 3) CASI(nominal) 876 Palmitic acid 871 Pyridine, 3-methyl onfirmed by ref. **GROUP 3** HIT 1 Cluster of HIT 1 743 structural 758 HIT 1 closely related compounds 856 invløvridine (isomers) 906 HIT 1 935 Problem Cases 433 897 896 HIT 2 (=>workflow igh number of isomers, correct structure not ranked into TOP 10 by Caryophylle optimization) Not Identifi 644 625 689 NK-01_033_Unknow (CASInominal Not Identified "NOT 735 724 586 HIT 2 **IDENTIFIED**" -UNK-04_191_Unknown-0 (Scientist review Not Identified 713 612 D-UNK-05 040 Unknown-00 747 Scientist rev ■ NIST MF ■ CASInominal ■ CASInominal x Accurate Fragment Score **Re-evaluation** Not Identified (CASInominal 579 695 D-UNK-07 117 Unknown-0 Not Identified For two compounds, workflow optimization is required (see conclusions). These 558 511 ID-UNK-02_118_Unknown-02 76 (CASInominal) Not Identifie compounds were therefore excluded from further evaluation Not Identified 674 673 462 D-UNK-06 063 Unknown-0

Figure 3. Test Set Results – ability for proposing the correct structure using either NIST match factor, CASI nomina Score, or linear combination of CASI_{nominal} Score together with in silico Accurate Fragmentation Score.

SCIENCE

PHILIP MORRIS INTERNATIONAL

Arno Knorr, Elyette Martin, Martin Almstetter, Antonio Castellon, Pavel Pospisil, Mark Bentley PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland

Results

Figure 4. Discrimination of the correct structure from other proposals using either NIST Match Factor, CASI nominal Score, or linear combination of CASI_{nominal} Score together with in silico Accurate Fragmentation Score, example for 3-acetylpyrrole.

h ASMS Conference on Mass Spectrometry and Allied Topics, San Diego, CA, USA June 3-7, 2018

Figure 2.	Workflow for	CASI usina	accurate	mass	resol
ga. e		er ter den ig	accarato		.0001

Conclusions and Discussion

CASI HIT	Compound Name	Structure	NIST MF	CASI _{nom.} Score	MW	Formula	in silico Acc. Frag. Score	CASI _{nom.} x in silico Acc. Frag. Score
1	3-Acetylpyrrole (confirmed)	The second se	941	938	109.05276	C6H7NO	976	915
2	5-Bromo-3- methylidene-1- methoxy- cyclohexane	ă Ç	933	933	204.01498	C8H13BrO	37	35
3	Ethanone, 1-(1H- pyrrol-2-yl)-		897	879	109.05276	C6H7NO	976	858
4	3-Ethyl-4- methylpyrrole		932	855	109.08915	C7H11N	395	338
5	1-Cyano-2- methylbuten-3-one	×**	900	838	109.05276	C6H7NO	976	818
6	Pyridine, 3-methoxy-	°-€	725	721	109.05276	C6H7NO	976	704
7	Phenol		693	677	94.04186	С6Н6О	37	25
8	3-Ethyl-2- methylpyrrole	<pre>{}</pre>	739	672	109.08915	C7H11N	395	266
9	3-Methylpyridazine		663	645	94.05310	C5H6N2	395	255
10	2-Vinylfuran		651	589	94.04186	С6Н6О	37	22

• Out of more than 400 compounds found in the aerosol of THS above 100 ng/item using GCxGC-TOFMS (in comparison with more than 2,900 compounds found in 3R4F), a subset of 30 compounds was selected to test the performance of the enhanced structural identification workflow as a proof of concept stage.

- Accurate Fragmentation Score (100%), NIST MF (79%), CASI_{nominal} Score (89%)
- For two compounds, the workflow requires further optimization:
- therefore not submitted for further processing (constraint for proof of concept stage).
- Two compounds had low Scores, further confirming their absence from commercial MS libraries.
- qualification of our enhanced structure identification platform, will be performed.

References

1] Knorr, A., et al., Analytical chemistry 2013, 85, 11216

- https://www.ncbi.nlm.nih.gov/pubmed/24160557 [2] University of Kentucky [Internet]. Specifications of 3R4F, <u>https://refcig.uky.edu/</u>
- resources/pdf/webdocs/3R4F%20Preliminary%20Analysis.pdf [3] LECO Corporation, https://www.leco.com/index.php/products/separation-science

lution spectra and in silico assignment of fragments to structural features.

• Diversity and complexity of structures and specificity of mass spectra were considered as inclusion criteria. • For 28 compounds, the workflow demonstrated excellent results by ranking the correct structure as HIT 1 for all compounds in the test set, which further improves the CASI_{nominal} approach:

• For 46% of evaluated compounds, discriminatory power increased using Accurate Fragmentation Score. • For 25% of evaluated compounds, clusters of isomers scored closely together (considered for reporting).

• Stigmasterol: NIST MS Search generated an inconsistently low spectral FIT (ranked as HIT 2).

• Trans-caryophyllene: correct structure not ranked within the top 10 candidates by CASI_{nominal} Score and

• A group of six compounds classified as 'not identified' were included for evaluation of false discovery rates.

• Four compounds were considered for further evaluation due to acceptable Accurate Fragmentation Scores.

• For the next stage, full automation using an integrated workflow is planned, as established for CASI_{nominal}.

• Evaluation of a much larger dataset, scaled for meaningful statistical evaluation of workflow performance and

[4] Knorr, A., et al., Intern. Patent WO 2012146787 A1, PCT/EP2012/057942, 2012 [5] ACD/MS Fragmenter, version 14.01, Advanced Chemistry Development, Inc., Toronto, On, Canada, <u>www.acdlabs.com</u>, 201X. [6] NIST MS Search v.2.3, https://chemdata.nist.gov/

Competing Financial Interest

The research described in this poster was sponsored by Philip Morris International