

## Characterizing the genotoxic potential of e-cigarette components in vitro

Daniel Smart, PhD, UKRT, DABT.

PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.

The research described in this presentation was sponsored by Philip Morris International.



| Outline                                        |                                                         |                                                                                         |                                                               |  |  |
|------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
| 1.                                             | 2.                                                      | 3.                                                                                      | 4.                                                            |  |  |
| Nicotine-<br>induced<br>"genotoxicity"         | Comprehensive<br>in vitro<br>genotoxicity<br>assessment | Non-flavored<br>e-liquid-<br>induced<br>"genotoxicity"                                  | Collection of<br>e-cig aerosols<br>for in vitro<br>assessment |  |  |
| Key concepts:                                  |                                                         |                                                                                         |                                                               |  |  |
| - Mode-of-<br>action<br>- Lysosomo-<br>tropism |                                                         | <ul> <li>Extreme<br/>culture<br/>conditions</li> <li>DNA damage<br/>response</li> </ul> | - Critical<br>review of<br>literature                         |  |  |
| Final conclusions                              |                                                         |                                                                                         |                                                               |  |  |







Nicotine-induced
 "genotoxicity"



Assessment of nicotine's genotoxic potential to address the paucity of modern-day data

- (-)-Nicotine was evaluated in a state-of-the-art battery of in vitro genetic toxicology assays (under GLP conditions) as part of safety assessment of e-cigarette chemical components.
- Mammalian genotoxicity: flow cytometry-based *in vitro* micronucleus (MN) assay (MicroFlow®, Litron Laboratories, USA).
- N CH3

(-)-Nicotine:

- Test system: Chinese hamster ovary-Wolff Bloom Litton (CHO-WBL) cell line (provenance: Merck Research Laboratories, USA).
- Results: concentrations ≤3.95 mM had no effect on background levels of MN after 24 h treatment, but ≥4.93 mM, tandem increases in MN and hypodiploid nuclei were observed → evidence of aneugenicity.







Smart et al., 2019, Environ. Mol. Mutagen. 60: 778-791

## Nicotine-induced perturbation of microtubules

■α-Tubulin = Green; Nuclear DNA = Blue. Examples of vacuolization (介) and an abnormal spindle (△).



Smart et al., 2019, Environ. Mol. Mutagen. 60: 778-791



## Lack of histone phosphorylation and probable lysosomotropic mode-of-action





- Phospho-serine<sup>10</sup> H3: occurs in Mphase cells → marker of aneugenicity (measured at 4 h).
- Concentration-dependent decrease observed for nicotine.
- Lysosomotropism: trapped chemicals accumulate in acidic cellular compartments → organelle swelling → microtubule perturbation.
- Nicotine-induced MN modulated by increasing pH of acidic compartments chemically.







# 2. Comprehensive in vitro genotoxicity assessment



## Why comprehensive in vitro assessment?

Affords:

- Broad understanding of genotoxic potential.
- Mode-of-action insights.
- Fulfilment of **regulations**.
- 3Rs benefits.
- Lack of data complementarity in multi-assay assessments.
- Potential specificity issues in rodent cell lines.
- Hence, an integrated assay concept in human cells:
  - Chromosome damage.
  - Gene mutation.
  - Mode-of-action.
  - Leverage existing assays and technologies.



## One human cell culture, multiple endpoints



Smart et al., 2020, Mutat. Res. Gen. Tox. En. 849: 503129

## Multiparametric data to inform hazard potential







## **Comprehensive analysis accomplished**

- Successful integration of the 3 genotoxicity endpoints into 1 assay without compromising the performance of any.
- Prototypical genotoxins were readily detected and induced response signatures commensurate with their mode-of-action:
  - DC revealed as potential in vitro aneugen.
- Non-genotoxins produced negligible changes in all assay endpoints.
- Possible **important** role to play in product assessment.
- Although not amenable to screening.







## 3. Non-flavored e-liquidinduced "genotoxicity"



### **Establishing the "baseline" effects of neat NFELs**

- Non-flavored e-liquids (NFELs) are the foundations for flavored e-liquid development.
- Contain varying levels of propylene glycol (PG), vegetable glycerin (VG) and nicotine.
- Why characterize these effects in the in vitro MN assay?
  - To serve as a **point of reference** for future MN studies on the aerosols of flavored e-liquids.
  - To shed light on the impact of **extreme culture conditions**.

|        | PG content (%) | VG content (%) | Water (%) | Nicotine (20 mg/mL) |
|--------|----------------|----------------|-----------|---------------------|
| NFEL-A | 70             | 20             | 10        | $\checkmark$        |
| NFEL-B | 40             | 40             | 20        | $\checkmark$        |
| NFEL-C | 20             | 73             | 7         | $\checkmark$        |
| NFEL-D | 100            | 0              | 0         | $\checkmark$        |
| NFEL-E | 0              | 100            | 0         | $\checkmark$        |
| NFEL-F | 70             | 20             | 10        | ×                   |



## **PG-predominate NFELs were more potent MN inducers after 24 h exposure in CHO-WBL cells**



PHILIP MORRIS INTERNATIONAL

BMD confidence intervals (exponential and Hill, per subgroup)

### All NFELs induced extreme culture conditions but none triggered the DNA damage response (DDR)









Smart et al., 2019, Tox. Res. App. 3: 1-9

## Holistic approach improves final interpretation



- Further evidence of likely irrelevant MN-positive results with PG-predominate NFELs in CHO cells:
  - Fundamental DDR to genuine genotoxins is not triggered.
  - Extreme culture conditions are **not** implicated.
- In future aerosol studies, divergences from this reference dataset might indicate a possible genotoxic hazard.





# 4. Collection of e-cig aerosol for in vitro assessment



## In vitro assessment of e-cig aerosols

- Expanding research domain.
- Utility in hazard identification.
- To-date, no standardized aerosol collection methodology for submerged cell culture assays.



 Consensus from Institute for In Vitro Science Inc. workshop members to map types of methods used and published.

## **Compilation of a robust database**

- •PubMed® search and keyword triaging.
- Data from 47 publications used in analysis.



Smart & Phillips. 2020, J. Appl. Toxicol. In press Seven broad collection methods cited and large heterogeneity among other study elements



CFP: Cambridge filter pad

Smart & Phillips. 2020, J. Appl. Toxicol. In press

## **Critical data gap**

- Dearth of chemical characterization data on the collected aerosol fractions:
  - Are trapped fractions **representative** of their native aerosols?

## **Conclusions and opportunities**

- Wide-range of aerosol collection approaches used.
- Most optimal collection method not currently known.
- Improve the value of in vitro data by:
  - Identifying the **best** collection method.
  - Standardizing aspects of aerosol generation & trapping.



Smart & Phillips. 2020, J. Appl. Toxicol. In press

## **Final conclusions**

- Conventional in vitro genotoxicity assessment of e-cigarette components can reveal unexpected findings.
- Mode-of-action analysis can facilitate the understanding of "traditional" genotoxicity data and mitigate any concerns over biological relevance.
- Approaches such as the integrated TK6 cell assay might provide a solution for comprehensive in vitro genotoxicity assessment.
- Further research is required to optimize the collection of e-cigarette aerosols for evaluation in submerged cell culture-based assays.



## Acknowledgements

PMI R&D co-authors:

- Damian McHugh.
- Fabian Helbling.
- Maëlle Verardo.
- Alizeé Huber.
- Patrick Vanscheeuwijck.
- Gary Phillips (Imperial Tobacco, UK).



