



# Impact of cigarette smoke and Modified Risk Tobacco Products (MRTPs) on DNA methylation

Amin Choukrallah, Scientist Genomics, Philip Morris International R&D

Thursday, May 4<sup>th</sup> sbv IMPROVER Symposium, Tel Aviv, Israel

## Background :

- Environmental impact on the epigenome
- DNA methylation readout
- DNA methylation and cigarette smoke exposure

## **Results :**

Effect of cigarette smoke and MRTPs on DNA methylation in murine lung tissue

- Experimental design
- Results and analytical methods
- Conclusions and perspectives









Epigenome : Sequence-independent modifications of DNA, DNA associated proteins and non-coding RNAs





### **Context specific readout of DNA methylation**



### **DNA Methylation != Repression**



Peter A. Jones 2012

## **DNA Methylation : Three distinct classes**

### WGBS : Whole-Genome Bisulfite Sequencing





### **DNA Methylation provides information about the genomic context**



\*DHS: Dnase Hyper Sensitivity

## **DNA methylation and cigarette smoking**

### Breitling et al, 2011

Human peripheral **blood** cells **177** samples 27K BeadChips Illumina Hypomethylation of **1** single CpG

### Shenker et al, 2012 Blood 374 samples 450K BeadsChIP Ilumina Hypomethylation 9 CpGs

### Joubert et al; 2012 Cord blood of newborns 1062 samples 450K BeadsChIp Illumina 26 CpGs mapped to 10 genes

Joehanes et al, 2016 Blood / CD4 T cells 15 907 samples 450K BeadsChIp Illumina 2623 CpG / 1405 genes Supplemental Figure 3. Volcano plot for CpG site association with respect to current versus never smoker



Current vs. Never Smokers





#### HumanMethylation450 array content.

| Feature type                                          | Included on array |
|-------------------------------------------------------|-------------------|
| Total number of sites                                 | 485,577           |
| RefSeq genes                                          | 21,231 (99%)      |
| CpG islands                                           | 26,658 (96%)      |
| CpG island shores (0–2 kb from CGI)                   | 26,249 (92%)      |
| - CpG island shelves (2–4 kb from CGI)                | 24,018 (86%)      |
| HMM islands <sup>a</sup>                              | 62,600            |
| FANTOM 4 promoters (High CpG content) <sup>a</sup>    | 9426              |
| FANTOM 4 promoters (Low CpG content) <sup>a</sup>     | 2328              |
| Differentially methylated regions (DMRs) <sup>a</sup> | 16,232            |
| Informatically-predicted enhancers <sup>a</sup>       | 80,538            |
| DNAse hypersensitive sites                            | 59,916            |
| Ensemble regulatory features <sup>a</sup>             | 47,257            |
| Loci in MHC region                                    | 12,334            |
| HumanMethylation27 loci                               | 25,978            |
| Non-CpG loci                                          | 3091              |

Bibikova et al; 2011

# The arrays contain mainly annotated loci

 Limited coverage of distal regulatory elements (Enhancers)

 Context dependent read out of DNA methylation



# Mouse models :

- WT BL6 mice
- Apoe -/- (Atherosclerosis-prone apolipoprotein E-deficient mice)
- A/J strain

# **Tissues**:

• Lung

# **Sequencing technique:**

• Whole Genome Bisulfite Sequencing (WGBS)





- Sham : Fresh air (control)
- **3R4F** : Conventional cigarette smoke extract
- **THS2.2** : Aerosol from Tobacco Heating System 2.2
- **pMRTP** : Aerosol from prototype MRTP

### THS2.2 and pMRTP : Heat-no-burn products



1-Can a smoke exposure signature be extracted from DNA methylation levels of cis-regulatory elements (CREs)?

2-Can a smoke exposure signature be extracted from expression data of genes controlled by differentially methylated DNA cis-regulatory elements?

1-Can a smoke exposure signature be extracted from DNA methylation levels of cis-regulatory elements (CREs)?

Identify differentially methylated CREs, including annotated (e.g. promoters) and unannotated (e.g. enhancers, insulators...) elements between smoke and fresh air exposed samples

#### Highly methylated promoters



- DNA methylation at promoters shows a bimodal distribution highlighting an excellent signal-to-noise ratio that allows accurate detection of methylated promoters.
- The vast majority of methylated promoters are not expressed. This observation further validates the biological meaning of DNA methylation signal in this study.





Study time (months)

CS (3R4F)-exposed vs. sham



\*Betabinomial test





🔺 LMR





Position around segment center (bp)



Workflow of LMR identification and differential methylation assessment







### Differentially methylated LMRs (FDR < 0.05)





CS (3R4F)-exposed vs. sham

# 1-Can a smoke exposure signature be extracted from DNA methylation levels of cis-regulatory elements (CREs)?

- Identify differentially methylated CREs, including annotated (e.g. promoters) and unannotated (e.g. enhancers, insulators...) elements between smoke and fresh air exposed samples
- Identify transcription factors potentially regulating the activity of the deferentially methylated CREs

Transcription factor motifs enriched in LMRs hypermethylated in 3R4F group at 8 months

| Motif name | Motif logo       | P-value |
|------------|------------------|---------|
| ERG        |                  | 1e-37   |
| ETS1       | ACAGGAAGT        | 1e-26   |
| EWS:ERG    | ATTTCCTG         | 1e-25   |
| FLI1       | SASTICC SET      | 1e-24   |
| ETV1       | <b>ACCGGAAGT</b> | 1e-24   |
| ETV2       | SEAFTTCCT SEE    | 1e-23   |
| GABPA      | ACCGGAAGT        | 1e-20   |
| FOXL2      | AST AAACAS       | 1e-20   |
| Foxo1      | <b>STGTTTAC</b>  | 1e-17   |
| EWS:FLI1   | <b>ACAGGAAAT</b> | 1e-15   |

http://homer.ucsd.edu/homer/index.html Heinz et al; 2010



## **Transcription factor expression**



Study time (months)

CS (3R4F)-exposed vs. sham



### Differentially methylated enhancers (FDR < 0.05)



CS (3R4F)-exposed vs. sham

Study time (months)



# 1-Can a smoke exposure signature be extracted from DNA methylation levels of cis-regulatory elements (CREs)?

- Identify differentially methylated CREs, including annotated (e.g. promoters) and unannotated (e.g. enhancers, insulators...) elements between smoke and fresh air exposed samples
- Identify transcription factors potentially regulating the activity of the deferentially methylated CREs
- > Extract a smoke exposure signature from DNA methylation levels of the identified CREs
- Classify each sample in the test set using the CRE smoke exposure signature extracted from DNA methylation data, providing the probability that a sample belongs to the 3R4F exposed group

### **Classifier: Linear Discrimination Analysis (LDA)**

### Training set

### **Signal ranking :**

• Moderate t-test between groups

### Testing set

### **Classification:**

Apply the LDA model and make predictions assuming equal priors of each class in the testing set

### **Feature selection:**

- Begin with the top d=2 features and move sequentially through the list, one element at a time
- The best value of **d** is chosen by Maximizing a 5-fold cross-validated performance (MCC) with 5 iterations





### Yang Xiang & Florian Martin

# 1-Can a smoke exposure signature be extracted from DNA methylation levels of cis-regulatory elements (CREs)?

- Identify differentially methylated CREs, including annotated (e.g. promoters) and unannotated (e.g. enhancers, insulators...) elements between smoke and fresh air exposed samples
- Identify transcription factors potentially regulating the activity of the deferentially methylated CREs
- > Extract a smoke exposure signature from DNA methylation levels of the identified CREs
- Classify each sample in the test set using the CRE smoke exposure signature extracted from DNA methylation data, providing the probability that a sample belongs to the 3R4F exposed group

2-Can a smoke exposure signature be extracted from expression data of genes controlled by differentially methylated DNA cis-regulatory elements?

- Identify the target genes controlled by the CREs from Question 1 Step 1. above
- Extract a smoke exposure signature from the expression data of genes controlled by the 1000 most differentially methylated CREs between smoke and fresh air exposed samples
- Classify each sample in the test set using the smoke exposure signature extracted from expression data, providing the probability that a sample belongs to the 3R4F exposed group



### LMR selection :

- Differentially methylated LMRs (FDR : 0.05)
- Consistent direction (Hyper / Hypo) through the 5 time points

### Gene selection :

- Select the closest promoter / gene
- Select genes with expression change anticorrelating with methylation change of the corresponding LMRs



## **Gene expression signature**



Differentially methylated LMRs (FDR < 0.05)



Apoe study



Number of differentially methylated enhancers as defined by chromatin signature



Apoe study



### **Cigarette smoke effect on gene expression**



#### Apoe study

Phillips et al ; 2016



- Cigarette smoke affects methylation level of very few promoters
- Cigarette smoke exposure affects the methylation of hundreds of LMRs (Enhancers)
- This effect is not observed for THS2.2 exposure and is strongly reduced upon cessation or switching to THS2.2
- Hypermethylated LMRs in 3R4F exposed samples are mainly enriched for ETS and Fox motifs in agreement with their role in lung function
- DNA methylation can be used as a marker for cigarette smoke exposure
- Further epigenetic investigations are required to better understand the underlying mechanisms (Mapping of transcription factors, histone marks, chromatin organization, etc ...)



# **Team members**

Nicolas Sierro Sonia Ouadi Jerome Thomas

Statistics and Machine Learning Florian Martin Yang Xiang

Nikolai Ivanov Julia Hoeng Manuel Peitsch

# **SBV Improver Team**



Thank you for your attention !





# **Support Slides**

Choosing the optimal statistical model:

Hidden Markov models (HMMs) ComMet, Bisulfighter...

### Fisher's Exact test methylkit...

Simple comparison (sample vs control) Does not take into account biological variability

Regression methods:

Take into account the overdispersion

- Linear regression Limma, RnBeads, BSmooth
- Logistic Methyl kit

Betabinomial DSS, RADMeth, BiSeq...
Performs better when there is more variance than expected



### Apoe<sup>-/-</sup> study data : Gene body methylation and gene expression



Ranked Gene expression

Raw Gene expression

Ranked Gene expression

Raw Gene expression

### No correlation between gene expression and gene body methylation was observed in our samples

