Comparative Assessment of Pharmacokinetics and Acute Lung Inflammation of Nicotine Dry Powder Aerosols Generated by PreciseInhale®

Sharon Lam¹, Raymond Ng¹, Blaine Phillips¹, Tan Wei Teck¹, Charles Teng¹, Chris Wong¹, Romain Piault², Celine Merg², Davide Sciuscio², Julia Hoeng² & Patrick Vanscheeuwijck²

¹PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore ²PMI R&D, Philip Morris Products SA, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland

> Drug Delivery to the Lungs (DDL) Conference 09 - 11 Dec 2020

Introduction

Why are we looking at delivering nicotine in a dry powder?

- Nicotine-containing dry powder (Batch A) has been successfully aerosolized and delivered intratracheally via the PreciseInhale® system in previous studies (Sciuscio et al., 2019).
- Batch B was produced for comparison with Batch A.
- Both batches were synthesized via spray-drying and contained 2% nicotine and other excipients.

Sciuscio, D. et al., 2019. Respirable aerosol exposures of nicotine dry powder formulations to *in vitro*, *ex vivo*, and *in vivo* pre-clinical models demonstrate consistency of pharmacokinetic profiles. Inhalation Toxicology, 31(6):248-257.

Research Questions

(1) Will the aerosol characteristics and nicotine pharmacokinetic (PK) profiles of both batches be comparable?

(2) Will these batches, when inhaled, cause **acute lung inflammation** in rats?

□ AEROSOL GENERATION AND DELIVERY

- Dry powder aerosol was generated and intratracheally delivered to anaesthetized rats (~250 g body weight) by using PreciseInhale[®] (Inhalation Sciences).
- Cumulative target dose: 0.1 mg nicotine/kg body weight

Schematic of the PreciseInhale® dry powder aerosol generation system

PARTICLE SIZE ANALYSIS

- Particle size distribution (PSD) was determined by using an 8-stage Marple cascade impactor.
- Mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD) of the aerosol's PSD were derived (Rubow et al., 1987).

Marple cascade impactor connected to PreciseInhale®

PK ANALYSIS

For nicotine/cotinine quantification, blood was sampled at timepoints (for 4 h from the start of exposure) via a tail-vein catheter.

LUNG INFLAMMATION ANALYSIS

- Bronchoalveolar lavage fluid (BALF) was collected at terminal time points (6 h and 24 h).
- BALF was analyzed for pro-inflammatory cytokines via Luminex[®] and differential cell count via flow cytometry.

* Phosphate Buffered Saline (PBS) for 1st cycle, PBS/bovine serum albumin (BSA) for the 2nd to 5th cycle.

7

[†] BALF from the 1st cycle only.

Results - PSD

- Dry powder aerosols generated from both batches had a similar MMAD of ~4 µm and GSD ~1.8.
- Aerosols were determined to be inhalable by using the Multiple-Path Particle Dosimetry (MPPD) 3.04 software (Applied Research Associates, Inc.).

Results – Exposure Duration

From both batches, 0.1 mg nicotine/kg body weight was delivered within short exposure durations (<5 min).</p>

Results – PK Analysis

Plasma nicotine and cotinine PK profiles and parameters for both batches were similar.

-Batch A

--Batch B

180

240

Batch	(min)	(min)	(ng/mL)	(ng/mL)	(min*ng/mL)	(min)	Batch	(min)	(ng/mL)	(ng/mL)	(min*ng/mL)	(min)
А	132.8	5	20.97	7.186	3341	96.19	А	240	3.642	3.964	595.8	147.1
В	138.1	5	23.01	7.844	3670	95.44	В	240	3.964	3.964	679.1	145.1

Results — Flow Cytometry Differential Cell Count

- Batches A and B did not cause significant increase in total lung cell count (p > 0.05) relative to air (control).
- Batches A and B did not cause significant increase in % cell count for any of the immune cell groups (p > 0.05) relative to air (control).

Results - Luminex[®] Pro-Inflammatory Cytokine Measurements

Overall, Batches A and B caused little to no significant increase in pro-inflammatory cytokine expression relative to air (control).

Conclusion

- Nicotine can be delivered into rat systemic circulation via inhalation of nicotine-containing dry powder aerosol.
- Dry powder aerosols generated from both batches have similar PSD, were delivered within similar exposure durations, and produced similar nicotine/ cotinine PK profiles.
- Dry powder aerosols generated from both batches caused no acute lung inflammation in rats up to 24 h post exposure.

Acknowledgements

Patrick Vanscheeuwijck, Alberto Oviedo & Davide Sciuscio (Pre-Clinical Toxicology)
Julia Hoeng (System Toxicology)
Blaine Phillips & Raymond Ng (Study Management)
Per Gerde, Mikael Mikko & Ewa Selg (Inhalation Sciences)
Tan Wei Teck & Ahmad Fairuz Omar (Aerosol)
Lidia Cammack, Charles Teng & In Vivo Operations team
Fabiana Spadaro (Product Design)
Celine Merg (Proteomics)
Romain Piault & Kondylis Athanasios (Statistics)
Chris Wong (Bio-Assays)

