

Alternatives to cytotoxicity assessment of eliquids using the neutral red uptake assay

Damian McHugh, Gianluca Cudazzo and Patrick Vanscheeuwijck

Philip Morris International R&D, Neuchatel, Switzerland.

Presentation Objectives

- 1. Details of the study protocols.
- 2. Neutral Red Uptake results obtained following (-)- nicotine treatment.
- 3. Performance of alternative approaches to assess cytotoxicity.
- 4. Conclusions.

Study Protocols

- \triangleright All cells seeded at 5 x 10³ cells ml in 96-well multiwall plates.
- ➤ Absorbance / Fluorescence read with a Tecan Safire II multi-mode plate reader operating with Magellan v7.0 software.
- > Cell counts performed using a Beckman Coulter Multisizer 4 cell counter.
- > Cytotoxicity scored 24-48h following start of exposure.

Apparent increase in neutral red uptake following exposure to eliquids containing (-)-nicotine

Viable cell counts not in agreement with NRU assay estimation of cell population viability following (-)-nicotine exposure

Macroscopic changes apparent in nicotine treated cells

> Enhanced NR uptake coincident with macroscopic changes to cell ultrastructure

Lysosome analysis via FACS confirms perturbation by (-)-nicotine

LAMP-1 staining increased in (-)-nicotine-treated Balb/c 3T3 cells

nucleus

Sensitivity to nicotine-induced effects on NRU conserved across multiple human cell lines

High-throughput compatible approaches to determine cytotoxicity in Balb/c 3T3 cells

- Nicotine cytotoxicity was successfully evaluated with all assays using metabolic measures of viability
- No nicotine-induced artefacts were detected
- Agreement between the direct (RCC) and metabolic assay processes estimation of the cytotoxicity EC₅₀

Determination of the WST-8 assay intra- and inter-day variability

Repeatability			Reproducibility		
	EC ₅₀			EC ₅₀	
	Nicotine (mM)	SDS (µM)		Nicotine (mM)	SDS (µM)
Operator 1	2.33	248.5	Test 1	3.09	246.5
Operator 2	2.06	249.9	Test 2	2.32	250.7
Operator 3	2.36	253.5	Test 3	2.42	280.7
Mean	2.3	250.6	Mean	2.6	259.3
SD	0.2	2.6	SD	0.4	18.7
RSD (%)	7.3	1	RSD (%)	16.0	7.2

Conclusions

- eliquids containing nicotine perturb lysosome functioning and introduce artefacts when characterising the cytotoxicity of such mixtures with the neutral red uptake assay.
- Alternatives to assess cytotoxicity with these types of mixtures include performing cell counts or using biochemical indicators of cell viability.
- Reduction of WST-8 was selected as the assay to validate and implement at PMI due to its consistency plus the possibility to assess additional endpoints in the same treated cells.
- ☐ The assay is suitable to assess cytotoxicity of nicotine-containing eliquids in multi-well plates without any changes to the upstream assay processes.

