

High-Resolution Mass Spectrometry in Combination with In Silico Prediction Tools to Improve Accuracy for Compound Identification

Environmental & Food MS Meeting - Manchester, February 7th, 2017

Eric Dossin, Elyette Martin, Antonio Castellon, Pierrick Diana, Pavel Pospisil, Mark Bentley, Philippe Guy

Philip Morris International R&D

Reduced-Risk Products ("RRPs") is the term we use to refer to products that present, are likely to present, or have the potential to present less risk of harm to smokers who switch to these products versus continued smoking.

We have a range of RRPs in various stages of development, scientific assessment and commercialization. Because our RRPs do not burn tobacco, they produce far lower quantities of harmful and potentially harmful compounds than found in cigarette smoke.

- Challenge for complex matrix characterization
- GC-HR-MS instrumentation
- Linear retention index (LRI) modeling
- Compound identification in complex matrices
- In silico prediction (use of fragmentation software)
- Improvement in compound identification
- Conclusion

Chemical Characterization of Diverse Samples is Challenging

More than 6'000 chemicals reported as present in tobacco plant and smoke ¹
 Many possible flavor compounds used in e-liquids or smoking products ^{2,3}

¹ The Chemical Components of Tobacco and Tobacco Smoke, A. Rodgman, T.A. Perfetti, 2013, 2^{na} Ed. CRC press.
 ² Leffingwell, J. C.; Young, H. J.; Bernasek, E. Tobacco flavoring for Smoking Products, *R. J. Reynolds Tobacco Company, Winston-Salem*, 1972.
 ³ EFSA flavoring substances database

PMI SCIENCE PHILIP MORRIS INTERNATIONAL

Analytical Technique: GC-High Resolution (GC-HR-MS)

GC-HR-MS_1 (7200A Agilent Q-TOF-MS)

Volatiles and semivolatiles LRI from 500 to 1'900

GC-HR-MS_2 (7200B Agilent Q-TOF-MS)

Apolar and polar LRI from 1'000 to 3'000

Goal is to screen the broadest range of smoke constituents Non-Targeted Screening

Volatile, Semi-volatile and Polar Compound Library

- 822 reference compounds were analyzed by GC-HR-MS
- Accurate mass spectra associated with their Linear Retention Indices were registered in the Personal Compound Database Library

An accurate LRI calculation and high quality spectra is key!!!

LRI Model Creation

- To predict LRI, two software combination were used:
 - 1. RapidMiner-Dragon
 - 2. ACD/Labs ChromGenius
- To build a relevant LRI prediction system 552 molecules were used:
 - 1. Experimental LRI
 - 2. Quantitative Structure-Property Relationship (QSPR) and structure similarities
- The experimental linear retention indices were randomly split as training (n=401) and test (n=151) sets
- > Validation set (n=23) confirmed the great performance of both prediction models
- > Discrepancy between two LRI predictions can highlight possible errors in the predicted values

Assessment of the Prediction Models (Test & Validation Sets)

Unique Compound & Spectra Database (UCSD)

Search Molecules Submit New Molecule Adm	inistration				
Search Molecules > Molecules > Molecule Details					
Back	Chemical classification	Physical Measurements			
PMI Mol Code: PMI0009992	Thiophene	Ref. OR: Ref. BP: Ref. MP:			
	1 - 1	Calculated Mol. Properties			
S C H	Generated Names / Structure Codes	Mol. Formula: C6 H8 S Mol. Weight: 112.19272 g/mol Isotopic Mass: 112.03467 g/mol ACD/LogP: 2.6 Solubility (w): 0.01 mol/L H. Bond Acceptors: 0 H. Bond Donor: 0 Drug-like: Yes Lead-like: Yes			
Batch List Collapse All Expand All Each level of this list corresponds to one entity: - molecule (neutral compound, e.g. PMI0000001)	IUPAC:	Predicted ADMET Properties Hum. Intestinal Abs.: Moderate Blood Brain Bar. Penetr.: High Plasma Protein Binding: Non binder CYP2D6 Inhibitor: No			
- substance (molecule + counter ion, hydrate e.g. PMI0000001-A)	Alternatif Identifiers	Hepatotoxicity: Toxic			
- batches (physical or literature substances, e.g. BC0000014). Click on a batch code to see its details. Batches matched by the search query are marked with	Common Name 3,4-Dimethylthiophene 3,4-dimethylthiophene	Literature Data			
a *.	Thiophene, 3,4-dimethyl-	Mass Spectra			
 PMI0009992-A PMI0009992-A BC000014280 BC000014291(SPR000002647) BC000015495 	1 - 3 <u>CAS</u> <u>632-15-5</u> 1 - 1				

UCSD is our in-house database that contains:
▶ 11'567 molecules
▶ 1'013 accurate mass spectra and LRI_{exp}

The 2 models were used to predict the LRI values of UCSD database (suspect list)

Our GC-MS conditions are suitable to analyze potentially 6'053 molecules

Of these 6'053 molecules, **3'646** have an available nominal El Mass Spectra (NIST or Wiley)

Creation of the Suspected Compound Library

🚺 Libi	Library Editor - Converted_All_UCSD_LRI.mslibrary.xml									
Compo	und Table									
	Compound ID	Compound Name	Alternate Names	CAS#	Formula	Molecular Weight	Retention Index	MolFile Last Edit 🔶		
	9	propyldithio propane	PMI0009753	629-19-6	C6 H14 S2	150.053691	8 1126.1477	Accelrys03 3/15/2016 4:50		
	12	Thiophene, tetrahydro-2-methyl-	PMI0009788	1795-09-1	C5 H10 S	102.05032	1 925.6817	Accelrys03 3/15/2016 4:51		
	17	(Z)-2-(1'-PROPENYL)TOLUENE	PMI0009016	2077-33-0	C10 H12	132.09390038	5 1075.2750	Accelrys03 3/15/2016 4:51		
	18	Furfuryl formate	PMI0003319	13493-97-5	C6 H6 O3	126.03169405	9 1048.5908	Accelrys03 3/15/2016 4:51		
	24	Ethana 1 (a athulahanul) 1 ahanul	DMI000E20E	10000 70 0	C10 U10	210 14005057	0 1710.000	Accelure 02 2/15/2016 4/51		
								F		
Spectru	im View]	Properties			
Max.	# of panes: 1	- 🔄 📴					Abundance Value	s 🛄 8.0,1.0,7.0,5.0,132.0,15 🔺		
	+ Scan Disul	fide_dipropyl (629-19-6)					Acquired Retentio	n Time		
×10	3	43.0					Base Peak Abund	lance		
				HB	5		Base Peak Mz			
0	5			<u> </u>	s-∕ 15		Collision Energy	4		
0.	5	27.0		108.0 🗠 🗠	e 10	0.0	Lompound ID			
			U .				Highest Mz			
	' 10 :	20 30 40 50 60 70	80 90 100	110 120	130 140 1	50 160 👻	Ion Polaritu	Positive +		

LRI prediction values were associated with the 3'646 nominal El mass spectra extracted from commercial libraries

Compound Identification in Complex Matrices

Reviewing Step

Suspect compound library (n=6 out of 21)

Level of Confidence for Commercial Library proposals

Case Study: Compound with a Poor Match Factor

GC-HR-MS in Chemical Ionization Mode & MS/MS

GC-HR-MS (Full Scan MS) Positive Chemical Ionization (PCI)

GC-HR-MS (Full Scan MS/MS) PCI data acquisition CID of 98.08004

Compound Identification with In Silico Fragmentation Software

Metfrag Results

Compound Identification with Fragmentation Modeling Software

CFM-ID Results

Results: Download ±										
Input spectra are shown below in blue. If a database was queried, candidate spectra are overlayed on top for comparison. The top ranking candidate spectra is shown by default; to compare other database candidate compounds that follow the spectra.										
Candidate Rankings										
Rank	Score Structure ID Chemical Formula InChI/SMILES									
1	0.27059567	CH _R	45531574	C5H7NO	InChI=1/C5H7NO/c1-6-4-2-3(4)5(6)7/h3-4H,2H2,1H3	Current				
2	0.23287233		32990381	C5H7NO	InChI=1/C5H7NO/c7-5-2-6-4-1-3(4)5/h3-4,6H,1-2H2/t3-,4+/m0/s1	Compare				
3	0.21118675	HU O	10340193	C5H7NO	InChI=1/C5H7NO/c1-4-2-5(7)3-6-4/h2,6H,3H2,1H3	Compare				
4	0.19719996		27268587	C5H7NO	InChI=1/C5H7NO/c1-4-2-5(6)7-3-4/h2-3H,6H2,1H3	Compare				
5	0.19212561	H ₄ C~_N	466735	C5H7NO	InChI=1/C5H7NO/c1-6-4-2-3-5(6)7/h2-3H,4H2,1H3	Compare				
6	0.19070942	OH N	4956336	C5H7NO	InChI=1/C5H7NO/c7-5-3-1-2-4-6-5/h1,3H,2,4H2,(H,6,7)	Compare				
7	0.1824996	HN	14395305	C5H7NO	InChI=1/C5H7NO/c7-5-2-1-3-6-4-5/h1-2,6H,3-4H2	Compare				

Final Score (MetFrag / CFM-ID)

InChl	CompoundName	Molecular Formula	Identifier	Structure	Rank MetFrag PCI	Score MetFrag PCI	Rank CFM-ID	Score CFM- ID
c1-6-4-2-3(4)5(6)7/h3-4H,2H2,1H3	2-Methyl-2-azabicyclo[2.1.0]pentan-3-one	C5H7NO	45531574	CH ₃	3	0.9758	1	0.271
c1-6-4-2-3-5(6)7/h2-3H,4H2,1H3	3-Pyrrolin-2-one, 1-methyl-	C5H7NO	466735	H _g C	1	1.0	5	0.192
c7-5-2-6-4-1-3(4)5/h3-4,6H,1-2H2/t3- ,4+/m0/s1	(1R,5S)-2-Azabicyclo[3.1.0]hexan-4-one	C5H7NO	32990381		16	0.9089	2	0.233
c1-4-2-5(7)3-6-4/h2,6H,3H2,1H3	5-Methyl-1,2-dihydro-3H-pyrrol-3-one	C5H7NO	10340193	HN	15	0.915	3	0.211
c1-6-4-2-3-5(6)7/h2,4H,3H2,1H3	1-Methyl-1,3-dihydro-2H-pyrrol-2-one	C5H7NO	4483194	H ₃ C	2	0.9913	11	0.167
c7-5-3-1-2-4-6-5/h1,3H,2,4H2,(H,6,7)	5,6-Dihydro-2(1H)-pyridinone	C5H7NO	4956336	NH	5	0.9354	6	0.191
c7-5-2-1-3-6-4-5/h1-2,6H,3-4H2	1,6-Dihydro-3(2H)-pyridinone	C5H7NO	14395305	HN	8	0.9294	7	0.182
c7-5-4-1-3(4)2-6-5/h3-4H,1-2H2,(H,6,7)	3-Azabicyclo[3.1.0]hexan-2-one	C5H7NO	14294945	OH	12	0.9173	8	0.182
c1-2-5-6-3-4(1)7-5/h1-2,4-6H,3H2	7-Oxa-2-azabicyclo[2.2.1]hept-5-ene	C5H7NO	29542634	NH	22	0.8925	9	0.181

Combined Score = (MetFrag × 0.66 + CFM – ID_{Norm} × 0.33)

Final Score (MetFrag / CFM-ID / LRI Predictions)

Unknown Peak LRI_{exp}:1,296

InChl	CompoundName	Molecular Formula	Identifier	Structure	Rank MetFrag PCI	Score MetFrag PCI	Rank CFM-ID	Score CFM- ID	Score MetFrag & CFM-ID	LRI RM	LRI CG	Final Score
c1-6-4-2-3(4)5(6)7/h3-4H,2H2,1H3	2-Methyl-2-azabicyclo[2.1.0]pentan-3-or	ne C5H7NO	45531574	CH ₃	3	0.9758	1	0.271	0.974	962.51	1036.66	0.65
c1-6-4-2-3-5(6)7/h2-3H,4H2,1H3	3-Pyrrolin-2-one, 1-methyl-	C5H7NO	466735	H ₃ C	1	1.0	5	0.192	0.894	995.41	1168.08	0.66
c7-5-2-6-4-1-3(4)5/h3-4,6H,1-2H2/t3- ,4+/m0/s1	(1R,5S)-2-Azabicyclo[3.1.0]hexan-4-on	e C5H7NO	32990381	H H	16	0.9089	2	0.233	0.884	1126.04	1015.88	0.64
c1-4-2-5(7)3-6-4/h2,6H,3H2,1H3	5-Methyl-1,2-dihydro-3H-pyrrol-3-one	C5H7NO	10340193	HN CH3	15	0.915	3	0.211	0.861	1057.08	918.43	0.56
c1-6-4-2-3-5(6)7/h2,4H,3H2,1H3	1-Methyl-1,3-dihydro-2H-pyrrol-2-one	C5H7NO	4483194	H ₃ C N	2	0.9913	11	0.167	0.858	994.94	1083.00	0.60
c7-5-3-1-2-4-6-5/h1,3H,2,4H2,(H,6,7)	5,6-Dihydro-2(1H)-pyridinone	5,6-Dihydro-2(1H)-pyridinone C5H7NO 4956336				0.9354	6	0.191	0.850	1110.21	1304.80	0.74
c7-5-2-1-3-6-4-5/h1-2,6H,3-4H2	1) We use Inchi information to draw the compound and							0.836	1170.32	1049.83	0.64	
c7-5-4-1-3(4)2-6-5/h3-4H,1-2H2,(H,6,7)	³ 2) Final SCOR	³ 2) Final SCORE was calculated using:							0.827	1041.30	1303.53	0.69
c1-2-5-6-3-4(1)7-5/h1-2,4-6H,3H2	 ✓ MetFra ✓ CFM-ID 	$ \stackrel{\text{O}}{\checkmark} \overset{\text{O}}{NetFrag Score} \stackrel{\text{Final}_{score}}{\leftarrow} \stackrel{\text{(MetFrag $\times 0.66 + CFM - ID_{Norm} $\times 0.33$) $\times LRI_{exp} $\times LRI_{exp}$}{\left[LRL_{exp} + \sqrt{(LRL_{exp} - LRL_{exp})^2} \right]_{Net} \left[LRL_{exp} + \sqrt{(LRL_{exp} - LRL_{exp})^2} \right]_{Net} \left[\frac{1}{2} \left[LRL_{exp} + \sqrt{(LRL_{exp} - LRL_{exp})^2} \right]_{Net} \right]_{Net} \left[\frac{1}{2} \left[\frac{1}{$							0.810	1098.64	893.42	0.54
	$\checkmark \text{ LRI}_{exp} \text{ against LRI}_{RM}$ $\checkmark \text{ LRI}_{exp} \text{ against LRI}_{CG} \dots$									F	MI S	CIENC IIS INTERNATION

Final Confirmation

+EI Scan (rt: 16.828 min)160921_3R4F.D Subtract

68.0273

x10

Similar El Mass Spectra

5,6-Dihydro-2(1H)-Pyridinone ✓

Bibliography

NIH NLM Natio	nal Center for Bi	otechnology Ir	nformation		
Pub©he	PEN MISTRY ABASE		Search Compounds	Q	
Compound Sum	nmary for CID	6453994		📩 Download 🖸 S	hare ? Help
5,6-Dihyo	dropy	ridin	-2(1⊦	l)-one	Cite this Record
<i>\</i>		< (.1.1		
STRUCTURE VENDORS	LITERATURE P	ATENTS BIOA	CTIVITIES		
PubChem CID:	6453994				
Chemical Names:	5,6-Dihydropy 5,6-DIHYDRO-	ridin-2(1H)-on 1H-PYRIDIN-2	e; 6052-73-9; 5 -ONE; 2(1H)-P	5,6-Dihydro-2(1H)-pyridone; 5,6-Dihydro- yridone, 5,6-dihydro- More	2(1H)-pyridinone;
Molecular Formula:	C ₅ H ₇ NO				
Molecular Weight:	97.117 g/mol				
InChI Key:	OXRRHYRRQV	VIHIV-UHFFFAC	DYSA-N		
Substance Registry:	FDA UNII				
PUBCHEM > COMPOUND	> 5,6-DIHYDRO	PYRIDIN-2(1H)-0	DNE	Modify Date: 2017-01-07; Crea	te Date: 2006-04-29
Contents	«	7.1 Deposi	tor Provide	d PubMed Citations	XO
1 2D Structure					📥 Download
2 3D Conformer		1 to 3 of 3			
3 Names and Identifiers		PMID	Date	Title	Journal
4 Chemical and Physical Pr	roperties				Bioorganic &
5 Related Records		23434420	2013-04-01	Anti-HBV active constituents from Piper longum.	medicinal chemistry
6 Chemical Vendors					letters
7 Literature				Synthesis of densely substituted trans-	The Journal of
8 Patents		20481450	2010-06-18	4-diones as 3:1 adducts of imines and	organic chemistry
9 Biological Test Results				ketenes.	
10 Classification 11 Information Sources		17869121	2007-12-01	Synthesis and biological evaluation of non-peptide alpha(v)beta(3)/alpha(5) beta(1) integrin dual antagonists containing 5, 6-dihydropyridin-2-one	Bioorganic & medicinal chemistry
				scaffolds.	-

Smoke Composition. An Extensive Investigation of the Water-Soluble Portion of Cigarette Smoke

Joseph N. Schumacher,* Charles R. Green, Freddie W. Best, and Marjorie P. Newell

Research Department, R. J. Reynolds Tobacco Company, Winston-Salem, North Carolina 27102.

310 J. Agric. Food Chem., Vol. 25, No. 2, 1977

- This compound was reported first from cigarette smoke by Schumacher et *al*. in 1977
- NOT registered in NIST 14 NOR in Wiley 11
- Strengthen the need to implement in silico predictions when dealing with untargeted analysis.

Conclusion

Existing MS libraries are not exhaustive; the implementation of chemoinformatic tools is needed to postulate compounds that are not registered in any library

The combined use of MetFrag and CFM-ID software has been demonstrated to be a good complementary tool to propose reliable compound hits

Addition of LRI predictions demonstrated the ability to correctly rank putative hits proposed by *in silico* fragmentation software

Thank You

eric.dossin@pmi.com

Eric Dossin, Elyette Martin, Antonio Castellon, Pierrick Diana, Pavel Pospisil, Mark Bentley, Philippe Guy

Philip Morris International R&D, Philip Morris Products S.A., (part of Philip Morris International group of companies)