

Mode-of-action analysis of genotoxicity detected by the *in vitro* micronucleus assay: two industry case studies es

Daniel Smart, PhD, ERT Philip Morris International Research & Development Neuchâtel, Switzerland

Outline			
Case study one	Case study two		
 (-)-Nicotine-induced genotoxicity 	 Non-flavoured e-liquid- induced genotoxicity 		
Keyconcepts			
 An eugenicity Advanced endpoints Lysosomotropism 	 Advanced endpoints Cell cycle G₁ G₂M 		
 Final remarks 			
 Info: case study data will also be presented at the poster session on 3 May 2018 (#38 and #39) 			

Case study one: (-)-nicotine - induced genotoxicity

www.pmiscience.com

Background

- (-)-Nicotine was evaluated in the standard battery of Good Laboratory Practice genetic toxicology assays (using Organisation for Economic Co-operation and Development (OECD)Test Guidelines) as part of the safety assessment of e-cigarette chemical components.
- Mammalian genotoxicity: flow cytometry -based *in vitro* micronucleus (MN) assay (MicroFlow®, Litron Laboratories, USA)
- Test system: Chinese hamster ovary-Wolff Bloom Litton (CHO-WBL) cell line (provenance: Merck Research Laboratories, USA)
- Results: concentrations up to 3.95 mM had no effect on background levels of MN after 24 hours (h) treatment, but ≥4.93mM, tandem increases in MN and hypodiploid nuclei were observed: evidence of aneugenicity.

Mode-of-action analysis

Perturbation of microtubule structure by (-)-nicotine

• α -Tubulin = Green; Nuclear DNA = Blue. Examples of vacuolisation (\triangle) and a tripolar spindle (\triangle)

(-)-Nicotine -induced centromere -positive MN & multinuclear cells

Correction of the second secon

Centromeres = Green; Nuclear DNA = Blue

Presence of centromer@ositive MN () and multinucleate cell() following 20 ur (-)-nicotine treatment (>4.93 mM): further evidence of an eugenicity

Lack of histone phosphorylation in response to (-)-nicotine

- γ H2AX: occurs in response to DNA double -strand breaks \rightarrow marker of clastogenicity (measured at 24 h)
- **Phospho-serine**¹⁰ H3: occurs in M-phase cells \rightarrow marker of **aneugenicity** (measured at 4 h)

Negligible effects on/H2AX in response to nicotine treatment

Concentrationdependent decrease in phospho-H3 in response to nicotine treatment

0.1

10

(-)-Nicotine's lysosomotropic properties drive genotoxicity

- Neutral red uptake (NRU) cytotoxicity assay: NRU inacidic compartments of living cells but not in dead/dying cells → used to assess and compare cytotoxic potency of chemicals..and now to reveal their lysosomotropic properties.
- Lysosomotropism : process by which chemicals become trapped in acidic compartments of cells, e.g. lysosomes.

Lysosomotropism \rightarrow organelle swelling and/or coalescence \rightarrow enhanced NRU capacity

Nicotine genotoxicity can be modulated by increasing pHof acidic compartments chemically

[Cudazzo et al., manuscript in preparation]

*NH4Cl: Ammonium chloride; BafAl: Bafilomycin Al (H+-ATPase inhibitor); Nigericin (K+ ionophore)

Non-genotoxic effects in alternative tests

- Human lymphocyte -based MNvit assay: female donors; PHA-stimulated; Cyto-B arrested; 21/24 hours recovery; replication index to measure cytotoxicity
- ToxTracke®: state-of-the-art mouse stem cell-based reporter assay that provides mechanistic insights into genotoxic properties of chemicals → DNA and protein (UPR) damage+ cellular (p53) and oxidative stress endpoints vis-à-vis cytotoxicity

Non-genotoxic effects in all treatment conditions up to 2.33 mM

3h-S9 **3**h+S9 **2**4h

DNA/protein damage and cellular stress endpoints negative up to 10 mMbut "weakly" positive oxidative stress response at 10 mM(24 h)

Case study one: summary & conclusion

Case study two: non -flavoured e-liquid -induced genotoxicity

www.pmiscience.com

Background

- Non-flavoured e-liquids (NL) are routinely screened for *in vitro* genotoxic potential in mammalian cells alongside their novel, flavoured e-liquid counterparts.
- A NL (NL-A) composed of 70% propylene glycol (PG) 20% vegetable glycerin (VG) and 20 mg/ml (-)-nicotine was used for a particular series of novel, flavoured e-liquids.
- Mammalian genotoxicity screen: flow cytometry-based MNvit assay in CHO-WBL cells (24 h treatment)
- Results: concentration -dependent increases in MN up to genotoxic levels were observed consistently over multiple independent studies.

Mode-of-action analysis

NL	PG content (%)	VG content (%)	(-)-Nicotine (20 mg/ml)
NL-A	70	20	\checkmark
NL-B	40	40	\checkmark
NL-C	20	73	\checkmark
NL-D	100	0	\checkmark
NL-E	0	100	\checkmark
NL-F	70	20	×

All NLs induced "extreme cell culture conditions" in vitro

• Changes in the pH and osmolality of the cell culture medium were measured immediately post-NL exposure.

PMI SCIENCE Philip Morris International

Majority PG -based NLs were more potently genotoxic in vitro

Concentration ranges were established that produced cytotoxicity at or just beyond the limit of the assay (relative population doubling (RPD) 40%)

Concentrationdependent increase in cytotoxicity for all NLs

Genotoxic potency rank order (BMD @ BMR):100 NL-D > NŁF, NŁA > NŁB (NL-C and NŁEwere defined as negrenotoxic)

 \rightarrow analysis performed in PROAST (data not shown).

Unmasking cytotoxicity via the cell cycle is critical for the interpretation of genotoxicity data

MIN POSTIVE HCAN Call of the Postive HCAN Call of the Call of the

- Cytotoxicity is manifested from a combination of cell death and cell cycle arrest
- E.g., representative cell cycle histograms of cell populations that have undergone chemical -induced cytotoxicity (75%)

Cells with RPD25 ±10%

No discernible differences in cell cycle profiles of NL -exposed cells

• Representative cell cycle histograms of cells exposed to NL-E and D for 24 h.

Lack of histone phosphorylation in response to NLs

Negligible effects on/H2AX

Effects on **yH2AX** and **phospho -serine**¹⁰ H3 endpoints were used to appraise the related MN findings

Negligible effects on phosphoserine¹⁰

Case study two: summary & conclusion

Final remarks

- Assessing potentially-modified risk tobacco product-related chemicals and mixtures to OECD Guideline limits in standard genetic toxicology assays can result in unexpected genotoxicity findings.
- Mode-of-action-type follow-up experiments are necessary to facilitate the understanding of such data.
- Analysis of advanced genotoxicity endpoints, e.g., histone phosphorylation and cell cycle profiles, and emerging technologies, such as ToxTracke®, may warrant inclusion into early phases of product development.

Acknowledgements

Fabian Helbling & Damian McHugh (Cell & Genetic Toxicology, PMI)

Patrick Vanscheeuwijck (Pre-clinical Toxicology, PMI)

External collaborators