

"Risikoreduzierte" Tabakprodukte Zukunftsoption des Rauchens?

Das wissenschaftliche Entwicklungsprogramm von PMI Science

Bern, 15.11.2018

Edith Helmle, MD Senior Manager Scientific & Medical Affairs Philip Morris Switzerland

Before we start

- This scientific overview is for the purpose of sharing scientific information with the Swiss scientific ommunity and <u>not</u> for advertising or marketing purposes regarding tobacco or nicotine containing products.
- The content of this overview is not and should not be regarded an an offer to sell, or a solicitation of an offer to buy or recommend any product of PMI or its affiliates

Reduced Risk Products ("RRPs") is the term PMI uses to refer to products that present, are likely to present, or have the potential to present less risk of harm to smokers who switch to these products versus continued smoking. PMI has a range of RRPs **in various stages of development, scientific assessment and commercialization**. Because PMI's RRPs do not burn tobacco, they produce far lower quantities of harmful and potentially harmful compounds than found in cigarette smoke.

Philip-Morris-Chef: «Ich will die Leute von den Zigaretten wegbringen»

Der Zigarettenabsatz der Tabakindustrie schrumpft. Der Philip-Morris-CEO äussert sich im Interview über die neue Strategie des Tabakkonzerns und erklärt, warum er nicht auf ein Comeback der Zigarette hofft und wieso seine Firma keine nikotinfreien Produkte führt.

NZZ;18.10.2018

E PHILIP MORRIS GEGEN ZIGARETTEN

"Das Ende der Zigarette ist nah"

VON BETTINA WEIGUNY - AKTUALISIERT AM 05.11.2018 - 14:48

FAZ;05.11.2018

What Is the Objective of Tobacco Harm Reduction?

Schweizerische Gesundheitsbefragung 2017

"Raucherzahlen seit 10 Jahren gleichbleibend, verändertes Konsumverhalten beim Alkohol"*

Raucheranteil bleibt gleich hoch

Nachdem der Anteil der Raucherinnen und Raucher von 1997 bis 2007 zurückgegangen ist, blieb er in den letzten 10 Jahren bei rund 27%. Der Anteil der Rauchenden ist bei den 15- bis 44-jährigen Männern mit 35% am höchsten. Stark reduziert hat sich jedoch die Menge des konsumierten Tabaks. So hat sich im Zeitraum von 1992 bis 2017 der Anteil der Rauchenden, die 20 oder mehr Zigaretten pro Tag rauchen, halbiert (1992: 41%; 2017: 21%).

For smokers who would otherwise continue to smoke an addition to existing tobacco control strategies is needed

Excess Risk of Smoking-Related Disease

Disease-Specific Relative Risk (by age) Relative risk of IHD, Stroke, COPD, and LC for an adult cigarette smoker

PHILIP MORRIS INTERNATIONAL

Excess Risk of Smoking-Related Disease

Reduction in Excess Risk Over Time

Disease Risk Half-Life ^[2] (The time at which half of the Excess risk associated with cigarette smoking has disappeared)

Age (a)	Lung Cancer	IHD	Stroke	COPD
Any age	-	-	4.78	13.32
to 49	6.98	1.47	-	-
50 to 59	10.39	5.22	-	-
60 to 69	10.60	7.48	-	-
70 to 79	12.99	13.77	-	-

Notes: Source: Half-life of risk: Lung Cancer (Fry 2013), COPD (Lee 2014), IHD (Lee 2012), Stroke (Lee 2014)

What Is the Objective of Tobacco Harm Reduction?

- Smoking is addictive and causes a number of serious diseases
- Offering smoke-free alternatives to adult smokers is a sensible, complementary addition to existing tobacco control strategies

Successful harm reduction requires that current adult smokers be offered a range of reduced risk products they can fully switched to, should they decide not to quit.

Our mission

Aerosol Science Analytical Chemistry Chemical Engineering Biochemistry Chemistry Toxicology **Electrical Engineering Biomedicine Physics** Biotechnology **Mechanical Engineering** Pharmacology **Organic Chemistry Cell Biology Materials Engineering Molecular Biology** Pharmacy **Materials Science Pharmaceutical Chemistry** Modelling Genetics **Computer Science Food Technology Clincial Science Flavor Science Biostatistics Mathematics** Epidemiology **Plant Biology** Medicine

430 R&D Experts - One Goal: To develop and scientifically assess products, that when switched to completely, have the potential to reduce the risk of smoking related diseases compared to continued smoking.

Elimination of Combustion Is Key

Scientific studies have shown that as the temperature of tobacco increases, the levels of harmful chemicals formed increases

Chemical Toxicology, 45,6,1039-1050

PMI's Reduced Risk Product Portfolio

Note: Reduced Risk Products ("RRPs") is the term PMI uses to refer to products that present, are likely to present, or have the potential to present less risk of harm to smokers who switched to these products versus continued smoking.

The RRPs depicted are subject to ongoing development and therefore the descriptions are illustrative and do not necessarily represent the latest stages of product development.

PMI's Scientific Assessment Approach

RRP HEALTH IMPACT MODELING ²

Curves are disease-specific Shown here: Lung cancer

Note: Reduced Risk Products ("RRPs") is the term PMI uses to refer to products that present, are likely to present, or have the potential to present less risk of harm to smokers who switched to these products versus continued smoking. Descriptions in the chart are for illustrative purposes only.

- (1) Smith, M.R., et al., Evaluation of the Tobacco Heating System 2.2. Part 1: Description of the system and the scientific assessment program. Regulatory Toxicology and Pharmacology (2016). http://dx.doi.org/10.1016/j.yrtph.2016.07.006
- (2) Baker et al., Modeling the impact of changes in tobacco use on individual disease risks; poster, SRNT 2017; https://www.pmiscience.com/system/files/publications/baker_srnt_2017_0.pdf

Assessment Framework: Informed by Epidemiology

*Harmful and potentially harmful constituents

Notes: Source: PMI Research and Development

RRIS INTERNATIONAL

Reduced Formation of HPHCs by Disease Categories

IP MORRIS INTERNATIONAL

Notes:

THS stands for <u>I</u>obacco <u>H</u>eating <u>System version 2.2</u>

Health Canada Intense Smoking Regime; Comparison on a per-stick basis; Excludes Nicotine

Independent Studies Results

Aerosol Chemistry

Committee on Toxicology (COT)

British American Tobacco

National Tobacco Quality Supervision and Test Center

Federal Institute for Risk Assessment (BfR)

University of Bern

National Institute of Public Health

Food & Drug Administration

Onassis Cardiac Surgery Center

National Institute for Public Health and the Environment (RIVM)

Ministry of Food and Drug Safety

Indoor Air quality

Fondazione IRCCS Istituto Tumori

Medved Research Center of Preventing Toxicology, Food and Chemical Safety

Pre-Clinical

British American Tobacco

UCSF

Roswell Park Comprehensive Cancer Center

Kazan Federal University

National Scientific Centre "M.D. Strazhesco Institute of Cardiology"

British American Tobacco

Study Design Reduced Exposure in Healthy Human Subjects

Measurements: Biomarkers of Exposure; Nicotine and its metabolites

ClinicalTrials.gov ID: NCT01989156

PMI SCIENCE PHILIP MORRIS INTERNATIONAL

Changes in Exposure to HPHCs

Reduced Exposure in Healthy Human Subjects

Notes:

Changes in Exposure to HPHCs

Reduced Exposure in Healthy Human Subjects

THS stands for Tobacco Heating System version 2.2 Source: PMI Research and Development

Notes:

Registered on clinicaltrials.gov: NCT01989156

Reduced Exposure Similar to Smoking Abstinence

Reduced Exposure in Healthy Human Subjects

THS stands for <u>Iobacco Heating System version 2.2</u> **Source:** PMI Research and Development

Registered on clinicaltrials.gov: NCT01989156 and NCT01970995

Study Design and Disposition - Exposure Response Study

Exposure Response Study: Primary Endpoint

Assess the changes across a set of the 8 co-primary clinical risk endpoints in smokers who switch from smoking cigarettes to using IQOS THS 2.2 as compared to those continuing to smoke cigarettes for 6 months

Exposure Response Study (6 months)

- The clinical study met its primary objective:
 - All co-primary endpoints shift in the same direction as smoking cessation
 - Majority of co-primary endpoints statistically significantly different vs. continued smoking
- Results achieved even with 30% concomitant use of cigarettes
- Results correlate with the amount of concomitant cigarette use

Co-Primary Endpoints Linked to Smoking-Related Diseases						
Disease	Mechanism	Clinical Risk Endpoint				
	Lipid Metabolism	HDL-C 🔗				
	Clotting	11–DTX-B2 🗸				
Cardiovascular	Endothelial Function	sICAM - 1 🗸				
Disease	Acute Effect	сонь 🔗				
	Inflammation	WBC 🔗				
Respiratory	Oxidative Stress	8-epi-PGF2α 🗸				
Disease and	Lung Function	FEV ₁ %Pred				
	Genotoxicity	Total NNAL 🔗				

Statistically significantly different to continued smoking

✓ In the same direction of change as smoking cessation

Summary of Scientific Results

We are committed to transparency and encourage independent verification

Clinical Assessment - Results to Date

Scientific Evidence to Date

PMI Studies

	18 Non-Clinical Studies				
Studies					
,	10 Clinical Studies				

30+ on THS assessment

 150+ on assessment methods & verification

Five Government Reports & > 25 independent studies

Independent research generally confirms that THS emits significantly lower levels of harmful chemicals compared to cigarettes and significantly reduces exposure to these toxicants in adult smokers who switch completely.

THS is the most researched smoke-free product in the market

- THS is not risk free and the best choice is to quit smoking
- Smokers carry a time-dependent relative risk of disease based on their smoking history when they quit or switch to THS
- THS is a much better choice for smokers than to continue smoking cigarettes
- Switching exclusively to THS is less harmful than continuing to smoke cigarettes.

Thank you for your attention

Independent Studies Results - Aerosol Chemistry

Compounds Classes	Forster ¹	Farsalinos ²	Bekki and al ³	Auer and al ⁴	Li and al⁵	Mallock and al ⁶	RIVM ⁷	Compounds per Class
ISO parameter	\checkmark	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark	Nicotine, TPM, Water, CO, Glycerin
Carbonyls	\checkmark	\checkmark	NA	X	\checkmark	√	*	Acetaldehyde, Acetone, Acrolein, Butyraldehyde, Crotonaldehyde, Formaldehyde, Methyl-ethyl-ketone (MEK), Propionaldehyde
Polyaromatic Hydrocarbons (PAH)	\checkmark	NA	NA	\checkmark	\checkmark	NA	NA	Benz[a]anthracene, Benzo[a]pyrene, Dibenz[a,h]anthracene, Pyrene
Tobacco Specific Nitrosamines (TSNA)	\checkmark	NA	\checkmark	NA	\checkmark	NA	*	NNN, NAT, NAB, NNK
Aliphatic dienes	\checkmark	NA	NA	NA	\checkmark		*	1,3-butadine, Isoprene
Acid derivaties	\checkmark	NA	NA	NA	\checkmark	NA		Acetamide, Acrylamide, Acrylonitrile
Epoxides	\checkmark	NA	NA	NA	NA	NA	*	Ethylene oxide, Propylene oxide
Nitro compounds	\checkmark	NA	NA	NA	NA	NA	NA	Nitrobenzene
Aromatic amines	 ✓ 	NA	NA	NA	\checkmark	NA	NA	1-Aminonaphthalene, 2-Aminonaphthalene, 3-Aminobiphenyl, 4-Aminobiphenyl, o-Toluidine
N-heterocyclic aromatics	\checkmark	NA	NA	NA	NA	NA	NA	Pyridine, Quinoline
Halogen compounds	\checkmark	NA	NA	NA	NA	NA	NA	Vinyl chloride
Inorganic compounds	\checkmark	NA	NA	NA	$\overline{}$	NA	*	Ammonia, Hydrogen cyanide, Nitric oxide, Nitrogen oxides
Monocyclic aromatic hydrocarbon	\checkmark	NA	NA	NA	\checkmark	\checkmark	*	Benzene, Styrene, Toluene
Phenols	\checkmark	NA	NA	NA	\checkmark	NA	NA	Catechol, Hydroquinone, o,m,p-cresol, Phenol, Resorcinol
Metals/elements	\checkmark	NA	NA	NA	NA	NA	*	Arsenic, Cadmium, Chromium, Lead, Mercury, Nickel, Selenium

Confirm PMI results

X Contradictory to PMI results

1. Assessment of novel tobacco heating product heating product THP1.0 part 3: Comprehensive chemical characterization of harmful and potentially harmful aerosol emissions, Forster and al (BAT). Regulatory Toxicology and Pharmacology, 2017

2. Farsanilos presentation given at the Global Forum on Nicotine, Warsaw 2017

3. Comparison of Chemicals in Mainstream Smoke in Heat-not-burn Tobacco and Combustion Cigarettes, Bekki and al., J UOEH, 2017

4. Heat-Not-Burn Tobacco Cigarettes: Smoke by Any Other Name, Auer and al., JAMA Internal Medicine, 2017

5. Chemical Analysis and Simulated Pyrolysis of Thobacco Heating System 2.2 Compared to Conventional Cigarette, Xiangyu Li and al. Nicotine & Tobacco Research, January 2018

6. Levels of selected analytes in the emissions of «heat not burn» tobacco products that are relevant to assess hum health risks, Mallock and al., Archives of Toxicology, April 2018

7. National Institue for Public Health and the Environment (RIVM) Ministrry of Health, Wellbeing and Sports, 2018 * Beside nicotine that were published, HPCs were not reported but mentioned to be in line with Philip Morrise published data

HPHC Characteristics and Related Biomarkers of Exposure

PMI Biomarker	Smoke Constituents	FDA 2012 (FDA-18)	Toxicity (IARC)	Formation Temperature °C	Estimated Biomarker Elimination Half-life
3-HPMA	Acrolein	x	Respiratory, cardiovascular	300-500	10h
S-PMA	Benzene	x	Carcinogenic (1), cardiovascular, reproductive and developmental	> 400	9 to 15h
MHBMA	1,3-Butadiene	x	Carcinogenic (1), respiratory, reproductive and developmental	> 400	4 to 16h
COHb	Carbon monoxide	x	Cardiovascular, reproductive and developmental	> 300	1 to 6h
CEMA	Acrylonitrile	x	Possibly carcinogenic (2B), respiratory	400-550	1-2 days
4-ABP	4-Aminobiphenyl	x	Carcinogenic (1)	300-500	26h
1-NA	1-Naphtylamine	x	Not classifiable as carcinogenic to humans	300-500	
2-NA	2-Naphtylamine	x	Carcinogenic (1)	300-500	9h
Total NNAL	NNK	x	Carcinogenic (1)	direct transfer	10-18 days
Total NNN	NNN	x	Carcinogenic (1)	direct transfer	15h
o-Toluidine	ortho-Toluidine	-	Carcinogenic (1)	300-500	10 to 16h
1-OHP	Pyrene	-	Surrogate for Polycyclic Aromatic Hydrocarbons	400-600	20h
B[a}P	Benzo[a]pyrene	x	Carcinogenic (1)	450-600	3 to 4h
S-BMA	Toluene	x	Respiratory, reproductive and developmental	> 400	9h
HEMA	Ethylene Oxide	-	Carcinogenic (1) , respiratory, reproductive and developmental	< 400	5h
3-HMPMA	Crotonaldehyde	x	Not classifiable as carcinogenic to humans	300-500	2 days