

ONLINE AEROSOL ANALYSIS USING FTIR: ASSESSING CARBONYL YIELDS IN E-CIGARETTE AEROSOL

27.Aug- 1.Sep 2017
European Aerosol Conference 2017
Zürich, Switzerland

Falk Radtke

PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland (Part of Philip Morris International group companies)

Outline

- Introduction
 - Background
 - Motivation & Target
- Equipment & Method Concept
- Method Verification
- Carbonyls in e-cig Aerosols
 - Route of Generation
 - FTIR Identification & Quantification
 - Examples
- Summary

- Electronic cigarettes (e-cig) are emerging with numerous variations in designs and performance parameters within and across brands
 - Disposable or rechargeable, replaceable cartridges
 - Tank systems with larger batteries
 - Large capacity batteries, integrated circuits allowing heating power and flow adjustment
 (=> variation of nicotine delivery/puff)
- E-cigarette emissions need to be measured
 - Existing recommendations as to what needs to be tested (e.g. BSI, AFNOR)
 - Various groups working on the topic (e.g. CEN/TC 437/WG 4)
 - Carbonyls may be emitted by e-cigarettes, depending on the design and operations of the device

Motivation for Online e-cig Screening Method

- Standard chemical characterization is time consuming
 - Multiple process steps required (trap aerosol/extract/measure/evaluate)
 - Accumulation of 10 to 50 puffs required
- Short product development cycles facilitated by rapid screening tools
 - Assess and optimize product performance
 - Monitor product quality and reliability

Target

Primary: Quantify key e-cig aerosol constituents on a puff-by-puff basis

Done => Method presented at TSRC, Sep 2017, Palm Beach Gardens, FI, USA (1)

Secondary: Quantify carbonyls during critical End of Battery/Liquid (EoB/EoL) e-cig operation

ttps://www.pmiscience.com/library/ftir-method-e-cigarette-aerosol-characterization

Online E-Cig Aerosol Analysis Concept

	Key Constituents		mposition % w/w)	Boiling Point				
	Water	6	20	100°C				
	Nicotine	0.45	7	247°C				
	Glycerin	20	37.25	290°C				
	PG	34	65.5	188°C				
	Flavor*	0	5	-				
	Menthol*	0	2	212°C				
*0	*out of scope							

Basic Concept:

Use a FTIR gas analyzer with heated sampling lead

- Heat the E-cig aerosol to 180°C for analysis
- Heating aerosol to 180°C is
 sufficient to transfer droplets
 into gas phase
 but
 - low enough to not decompose key constituents and e.g. generate additional carbonyls

Experimental Setup

- Gasmet™ DX4000 FTIR Gas analyzer
- Gasmet[™] Portable sampling system
 - Heating controller, heated pump & filter, heated sample lines, calibrator
- PC with CalcmetTM software
- Aerosol generation using PSSP:
 Programmable Single Syringe Pump

Principle of Operation

- Michelson Interferometer performs Fourier transformation on IR beam passing the sample chamber
- Full IR –spectrum measured at high speed (>1 spectrum/s)
- Calcmet[™] software calculate factors for ref. spectra of selected gaseous compounds

Programmable Single Syringe Pump (PSSP)

Sample Flow in the FTIR Instrument

Single Port Setup for Puff-to-Puff (P2P)

Aerosol generation (CORESTA Method N° 81):

Puff Volume (PV) 55ml
Puff Duration (PD) 3s
Puff Interval (PI) 30s
Puffing Profile (PP) Square

Tested E-Cig & E-Liquid Composition

E-Cigarette				Name	H ₂ O (% w/w)	Nic (% w/w)	Gly (% w/w)	PG (% w/w)	∑ Key Constituent (% w/w)	Flavor (% w/w)	Menthol (% w/w)
	Recharchable battery, replacable cartomizer		Empty cartomizer, filled with test liquids	Test 1.1.	20	0.5	37.25	37.25	95	5	0
				Test 1.2.	20	7	34	34	95	5	0
				Test 1.3.	20	1.8	36.6	36.6	95	5	0
				Test 1.4.	20	3.5	35.75	35.75	95	5	0
				Test 3.1.	6	1	20	66	93	5	2
				Test 3.2.	6	4	20	63	93	5	2
				Test 3.3.	6	1.5	20	65.5	93	5	2
			Commercial Product	Liquid H	5.96 *	1.26*	20.2*	74.1*	101.6	nd	nd
				Liquid M	6.91*	0.91*	17.6*	65.9*	91.4	nd	nd
				Liquid L	7.28 *	0.45*	17.4*	64.1*	89.3	nd	nd

*Ratios taken from TPM filter analysis, Sep 2014

nd - not determined

FTIR Puff-by-Puff Results: Mass Ratios

- Secondary e-cig aerosol constituents result from thermal decomposition of primary liquid constituents
 - Known thermal decomposition routes:

PG: (methyl glyoxal=>) acetaldehyde, formaldehyde

Glycerin: (glycidol=>) acrolein, formaldehyde

- Overheating mainly occurs during insufficient liquid supply (end of liquid), uncontrolled/increase
 power, poor device maintenance, uncontrolled system configurations (e-liquids, device components,
 etc.), missing/insufficient/failed temperature control systems
- ⇒ Special situation investigation (end of battery, end of liquid) and single puff aerosol analysis helps understanding the root causes
- Online, fast FTIR method allows assessment of e-cig performance on single puff basis
 - Method identifies those puffs contributing to increased average carbonyl concentrations

E-Cigarette Aerosol FTIR Analysis

Quantification based on infrared (IR) absorption (wave number 900 cm-1 to 4200cm-1): End of Liquid (EoL) Example

Carbonyl Calibration: Acetaldehyde

Gas Calibration Method:

- Basis: Calibration gas in cylinder (500ppm)
- Pump/Valve setup run with different dilutions:
 - changing flow
 - comparing switching valve (dynamic) situation with constant flow response
- Calculating yields

Example 1: Carbonyls at "End of Cartridge"

Example 2: Carbonyls at "End of Cartridge"

Test Liquid Composition: 20% Glycerol, 72.2% PG, 6% Water, 1.8% Nicotine Test Setup: E-cig vertical orientation, Temperature controlled

- FTIR puff-by-puff method delivers reliable results for key e-cig constituents and yields can be quantified for nicotine, glycerin, PG and water on a per puff basis
- Carbonyls as potential thermal e-liquid decomposition products
 - can be quantified in case of overheating during critical end-of-liquid operation phase
 - yields per puff are close or below LOQ/LOD <u>during normal e-cig operation</u>

	C	oncentration (µg/l)	(1)	Yield (µg/puff) (2)		
	Formaldehyde	Acetaldehyde	Acrolein	Formaldehyde	Acetaldehyde	Acrolein
LOD	3.49	3.27	0.20	0.192	0.180	0.011
LOQ	10	9.3	0.57	0.550	0.512	0.031

- (1) Signal-to-noise MethodBlank (N2 flow only) for noise determination
- (2) Calc. base: 55ml puff (CORESTA, CRM Nº 81)
- FTIR puff-by-puff method enables fast online assessment of e-cig performance on single puff basis
- Automated online FTIR data post processing and evaluation method reduces time-to-results compared to classical trapping/offline analysis methods

The end, la fin, das Ende, la fine,

Thanks to

Roberto Monni

and

Andree Stoop

Thank you for listening

Further discussions possible at poster:

T310N206 Novel FTIR online method for e-cigarette aerosol characterization

F. Radtke, R. Monni, A. Susz, A. Stoop, J. Verbeeck, and S. Maeder