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Introduction and Objectives

The ability to efficiently disentangle the relevant information contained in multi-omics datasets has become an essential 
aspect of Systems Toxicology. While the complexity of the data generated during the toxicological assessment studies has 
increased, the analysis outcome has to remain quantitative and biologically interpretable. We illustrate such a multi-omics 
analysis using transcriptomics, proteomics, and lipidomics data from a published study [1]. Its aim was to investigate general 
exposure effects over eight months in ApoE−/− mice exposed to conventional cigarette smoke (CS) and aerosol from a heat-
not-burn tobacco product, and to assess the consequences of smoking cessation or switching to a heat-not-burn tobacco 
product after two months of exposure to cigarette smoke.

We applied sparse partial least squares correlation analysis that performs a L1-penalized multivariate complexity reduction 
scheme to extract relevant directions that correlate between data modalities. The first identified component captured the 
cigarette smoke exposure effect, while not distinguishing the other treatments. The loadings, which define this direction, 
were subsequently annotated using functional association clustering to enable the biological interpretation. The identified 
clusters included lipid metabolism, oxidative stress, and inflammation processes – all positively associated with cigarette 
smoke exposure. Notably, this analysis showed a concordant induction of lipid and protein components of the lung 
surfactants upon cigarette smoke exposure.

By identifying biological mechanisms that are relevant across data modalities, our approach supports a holistic interpretation 
of multiomics experiments and provides the basis for the quantitative assessment of toxicologically relevant mechanisms. 

Toxicology study for product assessment
ApoE-/- mice were exposed to mainstream aerosols for 5 days a week, 3 hours per day at a target nicotine concentration of 
30 µg/L. The five exposure groups and durations are detailed in Fig. 1: Control (sham), Cigarette Smoke (3R4F), heat-not-
burn tobacco product (THS 2.2), cessation, switching to heat-not-burn tobacco product (THS 2.2). Groups were composed of 
8 animals [2].

The quantified molecular responses to the various exposure conditions showed consistent patterns across the three data 
modalities in ApoE-/- mouse lungs (Fig. 3). A large number of molecules were significantly affected by CS exposure 
(thousands of probed mRNAs, hundreds of identified proteins and lipids), whereas the effects observed for the other 
exposure groups (exposed to aerosol from the THS2.2 heat-not-burn tobacco product, cessation and THS2.2 switching) were 
much more limited.
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Figure 2: Workflows for 
the generation of 
transcriptomics, 
proteomics, and 
lipidomics data. All the 
data used in this study 
have been deposited in 
public repositories [1].

Figure 1: Experimental design. The 
biological material was collected at the 
indicated timepoints and the relevant 
effects are obtained by performing the 
time-matched “treatment vs. control” 
comparisons.   

The ApoE-/- mouse lung proteome and lipidome both showed a broad response to CS exposure. Preliminary functional 
analysis of the single-omics results indicated that CS exposure induced alterations in lipid metabolism pathways and multiple 
lipid classes. In order to analyze these mechanisms in an integrated manner, a multivariate complexity reduction approach 
named “sPLS-can” was applied to identify the directions (“components”) that best correlate between to the matched 
proteomics and lipidomics datasets [6]. Expectedly, the CS-exposed lung samples were all captured in the first component 
(Fig. 4A). The proteins contributing to the proteomics first component were subsequently subjected to a functional 
clustering analysis that revealed their associations with several lipid metabolism, oxidative stress, and inflammation 
processes (Fig. 4B) [7].

Figure 6: Schematic network for the 
interplay among proteins and lipids in 
CS-induced lung response. The node 
colors indicate the source data used for 
quantifying the lung responses to the 
various exposure treatments.    

• The integration of lung transcriptomics, proteomics,  and lipidomics data enabled to assess the complex effects of CS 
exposure and revealed a complex response in terms of lipid-related processes (Fig. 6).

• Overall, CS exposure resulted in extensive lipid metabolism changes, potentially associated with adverse effects on the 
lung, including the observed emphysematous changes and increased inflammation [2].

• By identifying biological mechanisms that are consistent across data modalities, this integrative approach supports a 
holistic interpretation of multiomics experiments and provides the basis for the quantitative assessment of toxicologically 
relevant mechanisms. 

Generation of transcriptomics, proteomics, and lipidomics data
The relevant molecular species were extracted from the collected biological material and processed through their respective 
workflows to quantify their abundance (Fig. 2) [3,4,5]. 
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Figure 3: Volcano plots provide a 
global view of the molecular-
level response. The x-axis 
represents the amplitude of the 
response  (“differential 
expression”) while the y-axis 
quantifies its statistical 
significance (“-log10 false 
discovery rate”). For space 
reasons, only the 8-month time 
point is shown (see [1] and [2]
for data from all time points).

Figure 4. Panel A: sPLS-can main components in 
terms of samples (see Figure 1). “sPLS-can” stands 
for sparse partial least square canonical analysis. 
sPLS-can is related to principal component analysis. 
However, rather than identifying the components 
that best explain the variance of individual datasets, 
sPLS-can identifies the components in the data that 
best correlate between the two datasets.
Panel B: Clustered functional association network for 
proteins positively contributing to sPLS-can 
component 1. The identified clusters are the 
following: lipid-related functions (1), components of 
the pentose-phosphate pathway (2), immune-
related proteins (4), surfactants (5), and xenobiotic 
response proteins (6). The colors correspond to the 
(normalized) protein differential expression values 
obtained for the 8-month time-point. 

The disentanglement of the complex global responses to CS exposure in the proteomics and lipidomics datasets revealed 
several mechanisms that were then examined in a more targeted manner [1]. This analysis included the transcriptomics
data. Only the lipid metabolism-related results are discussed hereafter (clusters 1 and 5 in Figure 4B). 
Quantitative proteomics results showed that CS exposure had statistically significant effects on several surfactant and 
surfactant metabolism proteins (Fig. 5A). These alterations in surfactant metabolism likely contribute to the CS-induced 
changes in lipidome profiles of surfactant lipids (Fig. 5B). The quantification of the activities of transcriptional regulators 
implicated in lipid metabolic processes (C/EBP, SREBP, and PPAR families) were found to be significantly upregulated in the 
lungs of CS-exposed Apoe−/− mice (Fig. 5C) [3].

Figure 5. Panel A: Differential expression profiles for surfactant-related proteins. The fold-change is color-coded and statistical significance 
is marked. Panel B: Comparison of lipid concentration profiles for the surfactant-associated PC and PG lipid classes. Panel C: Transcription 
regulator activity quantification. The “strength” perturbation metric value is color-coded and statistical significance is indicated.
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