Proteomics as part of a multi-omics systems toxicological assessment of a mentholated candidate
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Modified risk tobacco products (MRTPs) are being developed with the aim of reducing smoking-related health risks. The Tobacco Heating ""‘02"9
System 2.2 (THS2.2) is a candidate MRTP that uses the heat-not-burn principle. We engaged a multi-omics systems toxicology approach to A ham ”go “ |
assess the respiratory effects of a mentholated THS2.2 (THS2.2M) in a 90-day rat inhalation study (OECD test guideline 413). For this, we sReF 23 (moleculan) endpomts
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complemented the standard OECD-endpoints by quantitative proteomics (iTRAQ) and transcriptomics of nasal epithelium and lung tissue. MRC(Lm) 23 I Histopathology X X
Quantitative causal network, functional association network, and gene set analyses of the transcriptomics and proteomics data facilitated the MRCHM) 23 I ;rar;scrigtomics j(( ;
. .pn . . roteomics
identification and comparative assessment of the exposure effects. / THS2.2M(L) 15 | | Lipidomics X
The adaptive response of the nasal epithelium to cigarette smoke (CS) included squamous cell metaplasia and an inflammatory response, with THs22m(v) 23
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high correspondence between the molecular and histopathological results. In contrast to CS exposure, the adaptive tissue and molecular 90d 90+42d
changes to THS2.2M aerosol exposure were much weaker and were limited mostly to the highest THS2.2M concentration in female rats. (males+females)  (females only)
In the lung, CS exposure induced an inflammatory response, triggered cellular stress responses, and affected sphingolipid metabolism. These
responses were not observed or were much lower after THS2.2M aerosol exposure. B
Overall, this multi-omics system toxicology analysis - including quantitative proteomics - complemented and reconfirmed the results from the _E “’“““"T’“’"
classical toxicological endpoints as well as identified reductions in a range of additional toxicological pathways [1]. — d H rJ — U — il — 2
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3RAF E \ RO(L . M RC(H _; - Figure 1. Design of the 90-day systems toxicology study to assess effects of CS and THS2.2M exposures on rat respiratory organs.
® 2 - ¢ 3 . .: E I 2 A. Groups of male and female rats were exposed for 90 days to fresh air (Sham) or cigarette smoke of three reference cigarettes: a standard reference cigarette (3R4F),
3 4 * 0} » 3 p % i and a low menthol (MRC(LM)) and high menthol (MRC(HM)) reference cigarette, all at 23 ug nicotine/L. Groups of rats were exposed to aerosol from THS2.2M (15,
" t(; “ _,_7#; ‘e , .’i& ] 23, and 50 ug/L nicotine). The 90-day exposure period was followed by a 42-day recovery period with female rats exposed to fresh air. Rats were exposed for 6 h per
oH (S . é S 0
< E day, for 5 days per week. N=6 for each group.
THS2.2 4 THS2.2 < THS2.2 4 - B. Quantitative proteomics workflow [2,3].
2l C. Definition of iTRAQ analysis sets.
ROS = oxidative-stress response; UPR = unfolded-protein response; OXP = oxidative phosphorylation; MET = metabolism; ts — N dSd I E p It h e l ium
IMU = immune-related; ECM = extracellular matrix " '
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¢ Edeml 025 Figure 3. Response of the respiratory nasal epithelium to exposure.
Q. Edem?2 0.00 Expression profiles for marker panel of epithelium cell types and basal lamina components. The protein and gene abundance and expression fold-changes compared
Hspa5 x X . X * s with the respective Sham groups are color-coded and statistical significance is marked (adjusted p-value, x = < 0.05, * = < 0.01). Missing values are marked in grey.
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Figure 2. Response of the lung to exposure. _ ' , 3 S [3] Titz, B., et al. Analysis of Proteomic Data for Toxicological Applications. Computational Systems Toxicology (2015), Humana Press, pp. 257-284.
A. Functional association clustering for proteomics data of the lung tissue. Functional clusters affected by the exposure conditions were identified and compared [4] Oviedo, A. et al. Evaluation of the Tobacco Heating System 2.2. Part 6: 90-day OECD 413 rat inhalation study with systems toxicology endpoints demonstrates reduced
across the different clusters, here the 90d female data are shown. exposure effects of a mentholated version compared with mentholated and non-mentholated cigarette smoke, Regulatory Toxicology and Pharmacology (2016) 81, 93-
B. Expression/abundance profiles for cellular stress-related gene/protein sets. 122.
C. Expression profiles for panel of immune-cell markers.

Human Proteome Organization World Congress Dublin, Ireland Competing Financial Interest

M SC

PHILIP MORRIS IN

=NC

17-21 September 2017
TERNATIONAL

All authors are employees of Philip Morris International (PMI) or worked for
PMI under contractual agreements. PMI is the sole source of funding and sponsor of this project.

_ .—



