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Systems biology combines comprehensive molecular analyses and quantitative modeling to understand the characteristics of a biological B
system as a whole. Leveraging a similar approach, Systems Toxicology aims to decipher complex biological responses following exposures. WL g
This work reports parts of a Systems Toxicology analysis in the context of the in vitro assessment of a candidate modified-risk tobacco product F':EJEE FEE :*ﬂ
(cMRTP) using a human nasal organotypic culture model*2. The term “modified risk tobacco product” means any tobacco product that is sold ) o
or distributed for use to reduce harm or risk of tobacco-related diseases associated with commercially marketed tobacco products”3. HEEIEE . * Figure 5: Induction of xenobiotic metabolism and oxidative
The objectives of this study included to demonstrate (1) robustness and reproducibility of systems biology data obtained from an organotypic L STK25 stress responses in the nasal organotypic epithelium
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Complementing a series of functional measures, a causal network enrichment analysis of transcriptomic data was used to compare GLRX x| % . ]
L . .. : . : . . FES - fold-changes compared with the air control are color-coded
guantitatively the biological impact of aerosol from the Tobacco Heating System (THS) 2.2, a candidate MRTP, with 3R4F CS at similar nicotine TXNRD? [ % . o .
. s . . . GCLM |3 % | and FDR-adjusted significance is indicated for the FDR-
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concentrations. In addition, the tissue response was measured by a mass-spectrometry based targeted proteomics approach, parallel reaction NDUREL L adjusted p-value < 0.05 (x) and < 0.01 (*) levels. Gene
. . . . ope LECC k3 - . . .
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retention time (iRT)-kit was used”. Figure 6. Exposure-induced pro-inflammatory responses. Figure 7. Alterations of proteins in the nasal organotypic cultures

Multianalyte profiling (MAP) data for secreted pro-inflammatory following exposure measured by parallel-reaction monitoring (PRM).

mediators measured at various post-exposure time points. Figure The log2(fold-changes) compared with the air control are color-coded and
adapted from Iskandar et al. (2017). the FDR-adjusted p-values are indicated (UPR, unfolded protein response).

Figure from Iskandar et al. (2017)*.
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