
High Content Screening analysis of the Biological Impact of Harmful / Potentially Harmful Constituents of **Tobacco Smoke**

INTRODUCTION

Exposure to cigarette smoke (CS) causes lung toxicity and increases the risk of developing chronic obstructive pulmonary disease and cancer [1]. CS is a complex aerosol with over 6000 chemicals. Thus, it is difficult to determine individual contributions to overall toxicity, as well as the molecular mechanisms by which smoke constituents exert their effects. Previously [2], we performed a systems toxicology evaluation of a subset of 14 CS constituents categorized as harmful/ potentially harmful constituents (HPHCs) of tobacco smoke by the U.S. Food and Drug Administration [3]. Here, we investigated the biological impact of additional 32 HPHCs using normal human bronchial epithelial (NHBE) cells. Cytotoxicity was evaluated using an impedance-based, multi-electrode array system. Additionally, 13 multi-parametric indicators of cellular toxicity were measured via high content screening (HCS) assays over a wide range of concentrations and at different time points (4h and 24h). Based on the HCS results, 10 HPHCs were selected for microarray-based transcriptome analysis followed by a computational approach leveraging mechanistic network models to further identify and quantify perturbed molecular pathways.

MATERIAL AND METHODS

Network Perturbation Amplitude (NPA)

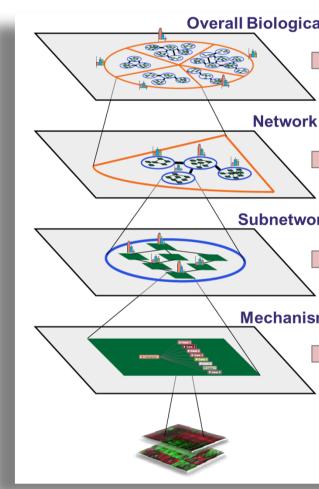


Figure 1. NPA scoring. By apply set of network models describing key biological processes (cellular stress, apoptosis, inflammation, DNA damage, senescence, etc.), NPA scoring enables the identification and the assessment of activated molecular mechanisms in response to HPHC exposure.

			activ	valed molecula
		Se	lection of HPI	HCs
Arsenic (III)	 p-Cresol 	 Arsenic (V) 	Acrilamide	Benzene
Selenium (IV)	 m-Cresol 	Nickel (II)	Phenol	• MEK

Arsenic (III) Selenium (IV) Lead (II)	•	p-Cresol m-Cresol o-Cresol	•	Arsenic (V) Nickel (II) 1-Aminonaphthalene	•	Acrilamide Phenol 2-nitropropane	•	Benzene MEK Nitrobenzene	•	Benz [a] anthracene Benzo [a] pyrene Benzo [b] fluoranthene	Dibenzo [a,l] pyrene Indeno [1,2,3-cd] Pyren
Mercury (II) 5-Methylchrysene		o-Anisidine Naphthalene	•	Crotonaldehyde Chromium (VI)	•	Acetamide Acetone	•	Quinoline Toluene	•	Benzo [k]fluoranthene Dibenz [a,h] anthracene	

CONCLUSIONS

This study provides a comprehensive overview of the toxicity mechanism of a wide selection of HPHCs. While some constituents showed no toxicity in NHBE cells, HCS analysis allowed us to gain insight into the molecular mechanisms of toxicity for 17 out of 32 tested HPHCs.

✤ In a subset of 10 HPHCs, transcriptomic analysis followed by a computational approach leveraging mechanistic network models offered deeper understanding of the biological pathways impacted upon exposure. Moreover, these results from the transcriptomics analysis were in fully agreement with those from HCS.

The combination of systems biology tools and high-throughput toxicity assays is a valuable approach to investigate the molecular mechanisms of toxicity. The results from this study will be used to support the approach to develop a systems biology-based risk assessment for Reduced Risk Products (RRPs).

REFERENCES

1. Rodgman, A., and Perfetti, T.A. The Chemical Components of Tobacco and Tobacco Smoke. 2013.

2. Gonzalez Suarez et al. Systems biology approach for evaluating the biological impact of environmental toxicants in vitro. Chem Res Toxicol. 2014. 3. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Tobacco Products. Rockville. Harmful and Potentially Harmful Constituents in Tobacco Products and Tobacco Smoke. 2012.

- 4. GraphPad Prism Version 5.00 for Windows. GraphPad Software, San Diego, California, USA
- 5. Martin F et al. Quantification of biological network perturbations for mechanistic insight and diagnostics using two-layer causal models. BMC Bioinformatics 2014

PMI RESEARCH & DEVELOPMENT

Ignacio Gonzalez-Suarez, Diego Marescotti, Stefano Acali, Stephanie Johne, Florian Martin, Remi Dulize, Karine Baumer, Dariusz Peric, Emmanuel Guedj, Stefan Frentzel, Carole Mathis, Nikolai V. Ivanov, Julia Hoeng, Manuel C Peitsch Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.

al Impact	<u>Overall Biological Impact</u> <u>Factor (BIF)</u> is computed as a linear combination of network scores
	<u>Network activity score</u> is computed as a linear combination of the scores of subnetworks within the network
ork	<u>Subnetwork activity score</u> is computed as a linear combination of the scores of mechanisms within the subnetwork
	<u>Mechanism activity score</u> is computed as a linear combination of the differential expression of genes supporting the mechanism
	anscriptomics data to a gical processes (cellula

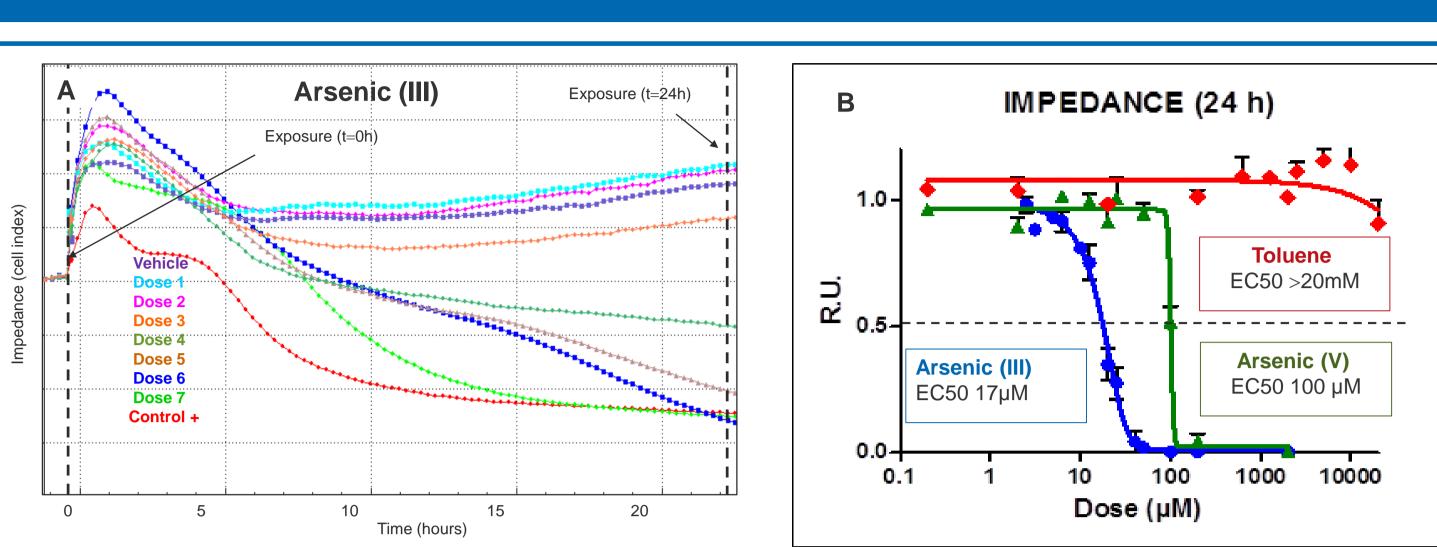


Figure 2. Effect of HPHCs on cell viability. A) Representative real-time cellular analysis experiment showing the response of NHBE cells to arsenic (III) (impedance is used as a readout of cell viability). Data was acquired every 15 minutes and represents the average of three replicate wells. Vertical dotted lines delimitate the exposure period (0-24h). Carbonyl cyanide m-chlorophenyl hydrazone (CCCP) was used as positive control. B) Impedance values at 24h post-exposure were normalized to vehicle control and fitted using GraphPad Prism® 5.0 [4] in order to calculate EC50 values. As (III), As (V) and Toluene are shown as an example. Data represents average ± SEM of at least 3 independent experiments. For all remaining HPHCs, EC50 values are shown in Table 3.

НРНС		Cell Loss	DNA Damage	Stress Kinase	GSH Content	Oxidative Stress	Caspase 3/7	Cytochrome C Release	Cell Membrane Permeability	Membrane	Mitochondrial Mass
5-Methylchrysene	4h	-	-	\checkmark	\checkmark	-	-	-	-	-	-
5 We dry terry serie	24h	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-
Arsenic (III)	4h	-	-	$\checkmark\checkmark$	\checkmark	-	-	-	-	-	-
Alsellie (III)	24h	\checkmark	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	-	\checkmark	$\checkmark\checkmark$	\checkmark	\checkmark	-
Lead (II)	4h	-	-	-	\checkmark	-	-	-	-	✓	$\checkmark\checkmark$
	24h	\checkmark	-	-	\checkmark	-	-	\checkmark	-	\checkmark	$\checkmark\checkmark$
m-Cresol	4h	-	$\checkmark\checkmark$	✓	\checkmark	✓	-	-	-	-	-
	24h	\checkmark	$\checkmark\checkmark$	-	$\checkmark\checkmark$	-	\checkmark	-	\checkmark	\checkmark	-
Mercury (II)	4h	-	$\checkmark\checkmark$	-	$\checkmark\checkmark$	✓	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	<i>√ √</i>
	24h	\checkmark	$\checkmark\checkmark$	-	$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
Naphthalene	4h	-	-	-	$\checkmark\checkmark$	✓	-	-	-	-	-
	24h	\checkmark	\checkmark	-	$\checkmark\checkmark$	-	-	-	-	-	-
o-Anisidine	4h	-	\checkmark	-	$\checkmark\checkmark$	-	-	-	-	-	-
	24h	\checkmark	$\checkmark\checkmark$	-	$\checkmark\checkmark$	-	$\checkmark\checkmark$	-	$\checkmark\checkmark$	-	\checkmark
o-Cresol	4h	-	$\checkmark\checkmark$	-	$\checkmark\checkmark$	✓	-	-	-	-	-
	24h	\checkmark	\checkmark	-	$\checkmark\checkmark$	-	$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$	-	-
p-Cresol	4h	-	$\checkmark\checkmark$	<i>✓</i>	\checkmark	-	-	-	-	-	✓
	24h	\checkmark	$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$	-	\checkmark	-	-	-	✓
Selenium (IV)	4h	-	$\checkmark\checkmark$	-	\checkmark	✓	-	$\checkmark\checkmark$	-	-	$\checkmark\checkmark$
	24h	\checkmark	$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$	-	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	-	-
1-aminonaphthalene	4h	-	$\checkmark\checkmark$	-	\checkmark	$\checkmark\checkmark$	-	-	$\checkmark\checkmark$	-	-
	24h	\checkmark	$\checkmark\checkmark$	\checkmark	\checkmark	$\checkmark\checkmark$	\checkmark	\checkmark	$\checkmark\checkmark$	-	-
Chromium (VI)	4h	-	\checkmark	-	✓	-	-	-	-	-	-
	24h	-	$\checkmark\checkmark$	-	\checkmark	-	$\checkmark\checkmark$	-	$\checkmark\checkmark$	-	-
Crotonaldehyde	4h	-	$\checkmark\checkmark$	-	-	$\checkmark\checkmark$	✓	-	$\checkmark\checkmark$	-	-
erotonalaenyae	24h	\checkmark	$\checkmark\checkmark$	\checkmark	-	\checkmark	\checkmark	$\checkmark\checkmark$	\checkmark	✓	-
Acrylamide	4h	-	$\checkmark\checkmark$	-	\checkmark	-	-	-	-	-	-
	24h	\checkmark	$\checkmark\checkmark$	\checkmark	\checkmark	-	-	-	\checkmark	-	-
Phenol	4h	-	\checkmark	-	\checkmark	-	-	-	-	-	-
	24h	\checkmark	$\checkmark\checkmark$	-	\checkmark	-	\checkmark	-	\checkmark	-	\checkmark
Nickel (II)	4h	-	-	-	$\checkmark\checkmark$	-	-	-	-	-	-
	24h	\checkmark	-	-	$\checkmark\checkmark$	-	\checkmark	-	-	-	-
Arsenic (V)	4h	-	-	-	\checkmark	-	-	-	-		
	24h	\checkmark	-	-	\checkmark	-	-	-	-	-	-

Table 4. Summary of HCS results. The table summarizes the HCS results only for the 17 HPHCs with a calculated EC50 value (Table 3). A result was considered as positive (\checkmark) if a dose-dependent response was observed with at least 2-fold increase in signal over vehicle control (or a 50% decrease in signal in the case of GSH content). A signal increase between 1.5 and 2-fold (or a decrease between 30% and 50% in the case of GSH content) was considered as weakly positive (\checkmark). Data represent results from at least 3 independent experiments. Based on the HCS results, a subset of 10 HPHCs (highlighted in blue in the table) were selected for further analysis via transcriptomics.

RESULTS


	НРНС	EC50 Value	R^2		НРНС	EC50 Value	R ²
1	Chromium (VI)	4 μM	0.995	17	o-Anisidine	11970 μM	0.968
2	Arsenic (III)	17 μM	0.968	18	2-nitropropane	> 20 mM	-
3	5-Methylchrysene	28 µM	0.961	19	Acetamide	> 20 mM	-
4	Arsenic (V)	100 µM	0.990	20	Acetone	> 20 mM	-
5	Mercury (II)	110 μM	0.999	21	Benzene	> 20 mM	-
6	Selenium (IV)	338 µM	0.982	22	MEK	> 20 mM	-
7	Crotonaldehyde	501 µM	0.994	23	Nitrobenzene	> 20 mM	-
8	Nickel (II)	520 μM	0.999	24	Quinoline	> 20 mM	-
9	Lead (II)	528 µM	0.918	25	Toluene	> 20 mM	-
10	1-Aminonaphthalene	1000 µM	0.964	26	Benz [a] anthracene	> 100 μM	-
11	Naphthalene	1176 μM	0.902	27	Benzo [a] pyrene	> 100 µM	-
12	m-Cresol	2028 μM	0.936	28	Benzo [b] fluoranthene	> 100 µM	-
13	o-Cresol	2170 µM	0.912	29	Benzo [k]fluoranthene	> 100 μM	-
14	p-Cresol	5060 µM	0.900	30	Dibenz [a,h] anthracene	> 100 μM	-
15	Acrilamide	5880 µM	0.981	31	Dibenzo [a,l] pyrene	> 100 μM	-
16	Phenol	6680 µM	0.982	32	Indeno [1,2,3-cd] Pyrene	> 100 µM	

Table 3. EC50 values for all HPHCs. Values were calculated at 24h of exposure using GraphPad Prism® 5.0 [4]. Only those HPHCs where an EC50 value could be calculated were further analyzed via HCS.

	Transcriptional regulation of the SA
	Stress induced premature senesce
SENESCENCE	Replicative senescence
	Regulation by tumor suppressors
	Oncogene induced senescence
AUTOPHAGY	mTOR signaling
AUTOPHAGT	ATG induction of autophagy
NECROPTOSIS	Fas activation
	TP53 TS
	Inhibition of DNA repair
	DNA damage to G2-M checkpoint
DNA DAMAGE	DNA damage to G1/S checkpoint
	Components affecting TP63 activity
	Components affecting TP73 activity
	Components affecting TP53 activity
	TNFR1 / Fas signaling
	PKC signaling
APOPTOSIS	NFκβ signaling
	MAPK signaling
	ER stress induced apoptosis
	Tissue damage
INFLAMMATION	Epithelial proinflammatory signaling
	Mucus hypersecretion
	Oxidative stress
	Osmotic stress
CELL STRESS	NFE2L2 signaling
CELL STRESS	Hypoxic stress
	Endoplasmic reticulum stress
	Xenobiotic metabolism response
	Wnt
	PGE2
	Nuclear receptors
	МАРК
	Jak Stat
	Hedgehog
PROLIFERATION	Growth Factor
	Epigenetics
	Clock
	Cell interaction
	Cell cycle
	Calcium
Eigura 2 Usat	man of NDA approa for
<u>rigure 3.</u> Heat	map of NPA scores for

selected HPHCs. The figure summarizes the biological networks (describing key cellular processes) that are significantly impacted upon HPHC exposure. Values range from least impacted (white) to most impacted (red). NPA scores are normalized to the

537

ments. The figure shows the results for only one dose (highest dose resulting in at least 70% cell viability at 24h) and two exposure time points (4h and 24h). * indicates that NPA score is significant (p<0.05) not only with respect to the experimental variation, but also considering the biology described in the network [5]

PMI RESEARCH & DEVELOPMENT

Philip Morris International Research & Development, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland T: +41 58 242 21 13, F: +41 58 242 28 11, W: www.pmi.com