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Real-time cell analyzer Network Perturbation Amp“tUde (NPA) Figure 2. Effect of HPHCs on cell viability. A) Representative real-time cellular analysis experiment showing the response of NHBE | 14|p-Cresol 5060 uM|  0.900 130|Dibenz [a,h] anthracene >100 uM -
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P maw linear combination of network was used as positive control. B) Impedance values at 24h post-exposure were normalized to vehicle control and fitted using GraphPad
w— "} nnnnnnn “ scores Prism® 5.0 [4] in order to calculate EC50 values. As (l11), As (V) and Toluene are shown as an example. Data represents average + SEM Table 3. EC50 values for all HPHCs. Values were calculated at 24h of exposure using GraphPad Prism® 5.0
o e Network activity score is of at least 3 independent experiments. For all remaining HPHCs, EC50 values are shown in Table 3. [4]. Only those HPHCs where an EC50 value could be calculated were further analyzed via HCS.
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