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The controlled tobacco-heating approach of CHTP 1.2, as well as that of THS 2.2, reduces the delivery of harmful smoke constituents, such
as SPMA, CEMA, and COHDb, as compared with conventional burning tobacco products (3R4F). Levels of nicotine metabolites (Trans-3-hy-
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Cigarette smoking is the main risk factor for the development and progression of a series of disease
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ApoE’" mice were exposed to air (control group), to CHTP 1.2 or

THS 2.2 aerosol, or to 3R4F CS at a concentration of 28.0 yg
nicotine/L (equivalent to 600 ug total particulate matter/L) for six
months.

Additionally, the impact of smoking cessation or switching to
CHTP 1.2 aerosol exposure after three months of 3R4F CS ex-
posure was assessed. Blood lipid profiling, histopathological
evaluation, computed tomography scans, and transcriptomic
analysis of thoracic aorta and heart ventricle were performed to
investigate the impact of CHTP 1.2 aerosol and CS exposure on
the cardiovascular system.

Animals were observed on a daily basis, body weight progression
was monitored twice per week, and exposure and uptake parameters

(including nicotine metabolites in urine) were measured three times
during the study.

Dissections were performed after two, three, four, and six months of

exposure.
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Biomarker of CS exposure COHb (carboxyhae-
moglobin concentration) measured in blood

Phillips?, Emmanuel Guedj', Ee Tsin Wong?, Bjoern Titz', Florian Martin’, Grégory /
Patrick Vanscheeuwijck’, Manuel C. Peitsch', and Julie

-1 PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Swi
2 PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park
3 Histovia GmbH: Schone Aussicht 5, D-51491 Overath, Germany.

s, Including cardiovascular disease (CVD) (1-4) and chronic obstructive pulmonary disease (5). Suitable animal
models play an important role in understanding smoke-induced pathogenesis. This study examined the development of hallmarks of CVD in ApoE" mice exposed to either cigarette smoke (CS) or to an aerosol
from two heated tobacco products, the Tobacco Heating System (THS) 2.2, and the Carbon-Heated Tobacco Product (CHTP) 1.2, over a six-month period. In addition to chronic exposure regimes, a comparison
of exposure cessation or switching to CHTP 1.2 after three months of exposure to CS was performed. Assessment of effects within this System Toxicology study leveraged a battery of assays: physiological, mor-
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Exposure to 3R4F CS resulted in increased plaque formation in the aortic arch of ApoE” mice com-
pared with the sham exposure, starting from Month 3. Cessation or switching to CHTP resulted in a
slowing of the plague formation, as the plague area in these groups was trending lower than the con-
tinuous 3R4F-exposed group in Month 4 and continuing to Month 6, where it was significantly lower.

Even three months after 3R4F exposure, the cessation and switch groups did not return to baseline
(continuous fresh air) plague area levels. There was no difference in plaque area in animals ex-
posed to CHTP 1.2 or THS 2.2 for six months compared to the fresh air-treated animals.
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Cessation or switching decreased atherosclerotic plaques and restored transcriptomic profiles to profiles similar to those observed in air-exposed
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Exposure to 3R4F CS resulted in significant impact on CVD parameters: atherosclerotic plague progression, heart ventricle thickness, lipid pro-
file. Continuous exposure to heat-not-burn tobacco products (CHTP 1.2 and THS 2.2) resulted in a very small difference in all measured param-
eters related to CVD when compared with fresh air-exposed animals.The biological response to switching to CHTP 1.2 (after three months of
3R4F CS exposure) were similar to those observed in the cessation group across the spectrum of endpoints assessed and showed a generally
positive effect with respect to continuous smoke exposure. Differential “omics” profiles associated with 3R4F exposure returned to nearly fresh
air levels following switching to CHTP 1.2 or fresh air (cessation). These data collectively indicated a halting or regression of CVD parameters fol-
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