

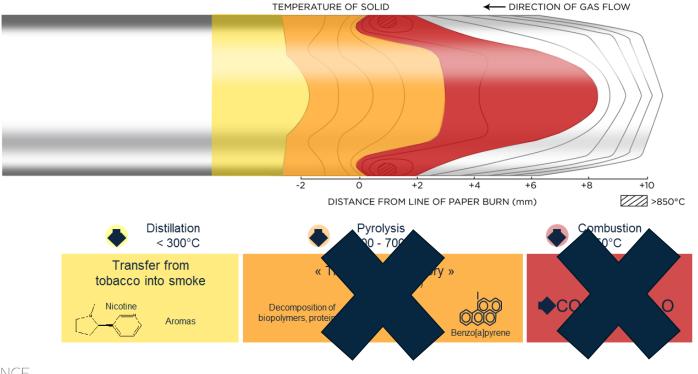
Air Quality assessment during indoor use of the Tobacco Heating System 2.2

THS 2.2. is commercialized under the IQOS brand name

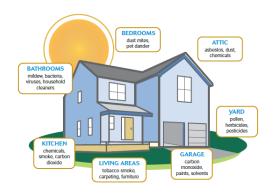
Dr Catherine Goujon Ginglinger - Philip Morris International Research & Development, Philip Morris Products S.A. (Part of Philip Morris International group of companies)

Japan Society for Environment Chemistry

June, 7-9. Shizuoka (Japan)


www.pmiscience.com

PMI heat not burn Tobacco Heating System vs. lit-end cigarette



- Heating maintains the tobacco temperature below combustion, which creates an aerosol* with a very different composition compared to cigarette smoke
 - Main constituents are water, glycerin and nicotine
 - The concentrations of Harmful or Potentially Harmful Compounds (HPHCs) concentrations are reduced on average by 90 to 95% compared with a 3R4F standard reference cigarette.
- The mainstream aerosol* is generated when a puff is drawn → no sidestream**
- *: an aerosol is a mixture made up of liquid droplets suspended within a gas
- **: sidestream is related to tobacco smoke that is emitted from the lit end of a cigarette or cigar

Impact of the temperature on the formation of toxicants

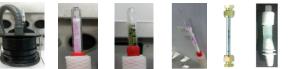
Why exploring Indoor Air Quality ?

- Indoor air quality (IAQ) relates to the health and comfort of building occupants.
- Several parameters contribute to IAQ.
- Presence and level of certain pollutants in the air can be precisely measured
- WHO guidelines for indoor air quality has established limits of exposure for nine pollutants

- For RRPs, the aerosol exhaled by the user will be the only source of polluting substances
- → How do THS 2.2 contribute to IAQ?
- → Is there any Environmental Tobacco Smoke (ETS*) when using THS 2.2?
- *: ETS also named second hand smoke is a mixture of sidestream smoke and exhaled smoke

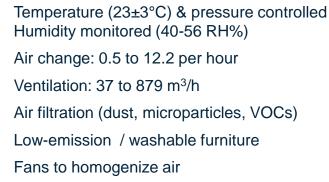
How to simulate an environment and assess the impact of a product on IAQ?

IAQ room & simulated environments


Environmental specifications according to CEN Standard (EN 15251:2007)

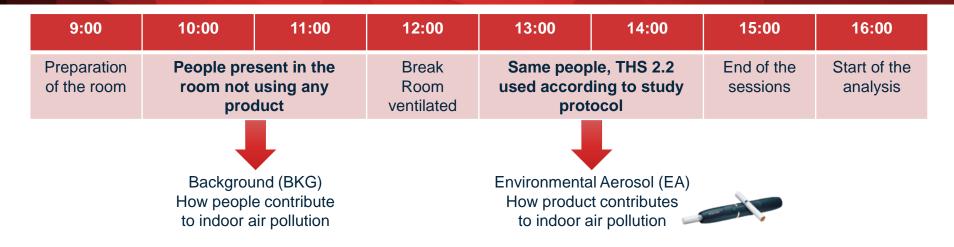
Environments	Ventilation Rate [m³/h]	Air changes [per hour]	Design Occupancy [m²/person]	Total number of test items		
Residential I	121	1.68	8	12		
Residential II	87	1.20	8	12		
Residential III	37	0.5	8	12		
Office	156	2.16	8	16		
Hospitality	555	7.68	4.8	32		

Collection: 26 pumps with mass flow controller – online analyzers for gases



Offline: Trapping system & analysis: chemical class / compound specific

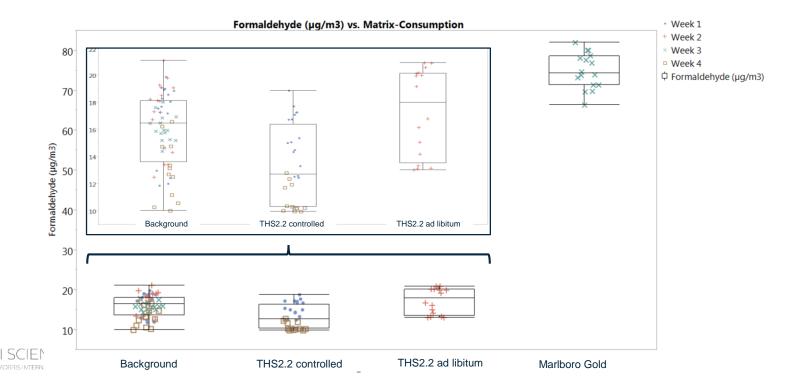
www.pmiscience.com



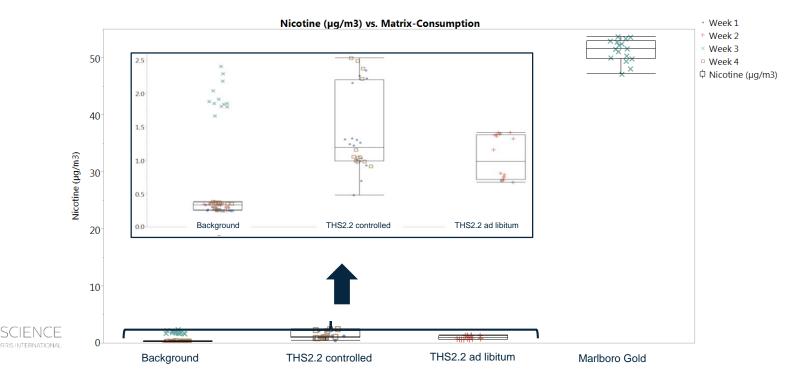
Selection of targets

Category – (Norm) -[unit]	Constituents	Rationale for selection			
ISO measurement standards for ETS (ISO Norms 15593, 2001; 18144, 2003; 18145, 2003; 11454, 1997) - [µg/m ³]	RSP gravimetric, UVPM-THBP, FPM- scopoletin, Solanesol,	PM2.5 & tobacco smoke related particulate matter markers			
	3-Ethenylpyridine, Nicotine	Gas-phase tobacco smoke specific markers			
ISO measurement standard for TVOCs (ISO 16000-6, 2011) - [µg/m ³]	Total Volatile Organic Compounds (TVOC)	Air quality marker			
Carbonyls - [µg/m ³]	Acetaldehyde, Acrolein, Crotonaldehyde, Formaldehyde	Relevance for air quality			
Volatile Organic Compounds (VOCs) - [µg/m ³]	<u>Acrylonitrile,Benzene, 1,3-Butadiene,</u> Isoprene, Toluene	Relative abundance in THS2.2 aerosol (i.e. the most abundant)			
Tobacco-specific Nitrosamines (TSNAs) - [ng/m ³]	N-nitrosonornicotine (NNN) 4-(methylnitrosamino)-1-(3-pyridyl)-1- butanone (NNK)	Carbonyls, VOCs, TSNAs: part of the FDA list of HPHCs			
Product-specific compounds: aerosol formers- [µg/m ³]	Glycerin, Propylene Glycol	Product-specific markers			
Inorganics (CO [ppm], NO [ppb],NOx [ppb])	<u>Carbon monoxyde</u> , Nitrogen oxide, Nitrogen oxides	Gas-phase tobacco smoke non-specific markers Gas-phase combustion marker			

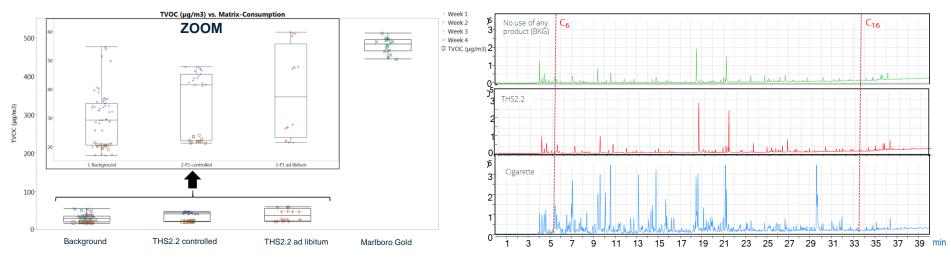
How to measure the impact of THS 2.2 on IAQ?



- When concentration is equivalent between BKG and product-use sessions: NO IMPACT ON IAQ
- When concentration is different between BKG and product-use sessions: THE IMPACT IS THE DIFFERENCE BETWEEN BKG AND PRODUCT SESSION
- Concentrations are compared to existing air quality guidelines (e.g. WHO, EU, MOH)


Example of comparison: Formaldehyde – residential III

Formaldehyde is an IAQ marker, non-specific marker of ETS. MHLW: 100 µg/m³


Example of comparison: Nicotine – residential III

Nicotine (ISO 18145:2003) is higher for THS 2.2 compared with background but significantly lower compared with the cigarette. **EU: 500 µg/m³**.

How much is THS 2.2 environmental aerosol different from background air?

TVOC (ISO16006-2011) provides a broader view of chemical composition (bp 69-287°C). LWRL: $2\mu g/m^3$. MEXT: 400 $\mu g/m^3$

BKG & P1 chemical compositions are highly comparable in contrast to the cigarette (TVOC value for well above guideline level).

Peaks above LWRL: 4-9 for BKG, 4-10 for THS 2.2, 73-87 for cigarette

Table of results

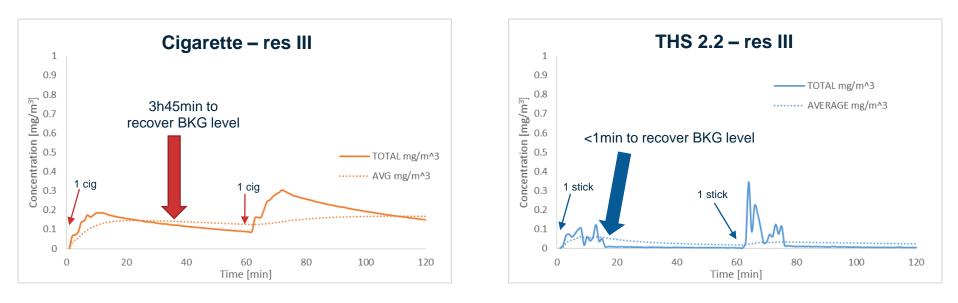
	Analyte [unit]	Residential I	Residential II	Residential III	Office	– Hospitality		Residential I	Residential II	Residential III	Office	Hospitality	
	RSP gravimetric [µg/m ³]							236	268	642	204	147	
	0 UVPM-THBP [μg/m ³]	THS 2.2 is not a source of						39.6	40.8	92.1	38.5	18.4	
	1 FPM-scopoletin [μg/m ³]	Environmental Tobacco Smoke					8.05	8.5	20.4	7.88	4.04		
	5 Solanesol [µg/m ³]	(absence of combustion markers)						10.2	9.84	23.8	10.2	4.68	LI
	0 3-Ethenylpyridine [µg/m ³]							6.02	7.61	10.5	6.39	3.94	
	5 Nicotine [µg/m ³]	0.69	1.81	0.70	1.10	0.66		29.7	29.1	49.8	34.7	34.6	
	0 Acetaldehyde [μg/m ³]	2.66	5.09	3.26	3.65	1.40		70.2	83.8	123	58.8	33.1	
2	Acrolein [µg/m ²]							6.94	5.65	11.6	6.42	3.03	ΓΙ
	0 Crotonaldehyde [μg/m ³]							2.19	2.11	3.54	2.04	0.99	ГΙ
3	Formaldehyde lug/m ³	2 co	ompoun	ds listec	l as HPI	HCs		27.1	35.5	58.4	28.9	17.5	ΓΙ
	0 Acrylonitrile [μg/m ³]	clearly attributable to the use of						2.53	3.61	5.26	2.61	1.36	ΓΙ
5	0 Benzene [μg/m ³]	1	THS 2	.2: Nico	tine &			7.09	9.24	14.4	6.58	3.5	F }
7	1 3-Butadiene [ug/m ³]		ace	etalden	/de			13	16.8	17.4	12.6	5.79	
8	Iconrene [ug/m ³]	Cond	entratio	ons of g	lycerir	n well		71.5	99.4	164	75.9	37	
ہ 9	Toluono [ug/m ³]	over 100 times below the						11.1	26.1	25	14.9	8.76	
10	- T (OC [existing guideline levels				ls			144	451			
15	NININI Frame (mm ³]	I		_						8.89			
20	NINU([1.49			
40				12.1						10.3			Γļ
65										60.5			- J
	CO [ppm]							1.63	2.17	2.66	1.58	0.92	
	NO [ppb]							26.2	35.6	59.4	27	14.8	
1 PM	SC ENO _x [ppb]					0.52		29.4	39.7	62.8	29.4	15.3	
PHILIP MORRISINTEI THS vs Background				- ·		Cigare	tte vs Back	ground	,	-			
(difference in units)							•	erence in u	-				

PM2.5 & tobacco smoke-related chemical markers

Compounds selected based on:

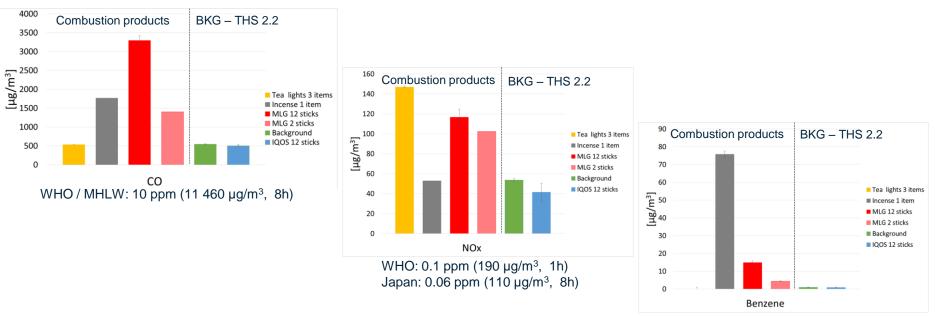
Relevance for air quality
Relative abundance in THS 2.2 aerosol (i.e. the most abundant)

Product specific markers


Gas-phase combustion marker

Aerosol vs smoke evolution in indoor environment

 Portable Dust Track measures suspended particulate matter on real time → lifetime of aerosol vs smoke



• THS 2.2 aerosols is constituted of liquid droplets, evaporating very fast when introduced in an indoor air environment.

Combustion vs heating

Complete and incomplete combustion are a source of contamination as noxious particulate matter and gases. These phenomena can occur in any product based on combustion

Indoor levels in developed countries 2-14 µg/m³ (WHO, 2010)

14

Wrap-up

• Indoor air quality study, under extreme conditions (low air change / high consumption) performed with THS 2.2 simulating residential category shows that:

- Markers of combustion are absent in Environmental Aerosols of THS 2.2
- THS 2.2 does not emit Environmental Tobacco Smoke (ETS)

• Of the measured compounds only two Harmful and Potentially Harmful Compounds, **nicotine and acetaldehyde**, were found in air following the use of THS 2.2. **Glycerin** was found at very low concentrations. The measured levels, however, are orders of magnitude below the maximum exposure levels as defined in existing air quality guidelines.

Using THS 2.2 indoors has no negative impact on the overall air quality

