Toxicological evaluation of the Tobacco Heating System 2.2, a candidate modified risk
tobacco product in a OECD inhalation study complemented with systems toxicology
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Introduction and study design

Smoking causes serious diseases, such as lung cancer, cardiovascular disease, and chronic obstructive pulmonary disease. Undoubtedly, the best way for smokers to
prevent the adverse health effects of tobacco is to quit smoking. In recent years, tobacco harm reduction has also emerged as a policy that can complement traditional
tobacco control interventions, such as prevention and cessation.

Here we show results of a 30-day rat inhalation study that was conducted in accordance with Organization for Economic Co-operation and Development (DECD) test
guideline 413" to characterize potential adverse effects caused by subchronic exposure to aerosol from the Tobacco Heating System (THS) 2.2, a heat-not-burn tobacco
product, and to compare with those induced by the smoke generated from the 3R4F reference cigarette.

Sprague Dawley rats were exposed for a period of [3 weeks to filtered air (sham). to three concentrations of mainstream 3R4F smoke (8, 19, 23 pa/L nicotine), or to THS 2.2
aerosol (19, 23, 80 pg/L nicotine). Care and use of the rats was in accordance with the National Advisory Committee for Laboratory Animal Research Guideline 20042, Exposure
was confirmed by numerous biomarkers, well reflecting test atmosphere constituent concentrations. All animal experiments were approved by the Institutional Animal Care and
Use Committee. Nicotine metabolites were determined by high-performance liquid chromatography after derivatization in 24-hour urine. Respiratory minute volume was
determined using head-out plethysmography (EMKA Technologies, France). The histopathological evaluation was performed at defined anatomical sites of the left lung, according
to a defined grading system. Free lung cells were determined in bronchoalveolar lavage fluid (BALF) by flow cytometry, and inflammatory mediators were measured by multi-

analyte profiling (RodentMAPR! v3.0).
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Systems response profile analysis Network perturbation analysis of lung Lung inflammation
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For each gene, the gene expression change is calculated as the log2 fold =55 >
change, (x-axis). The statistical significance, proportional to the negative logl0 =,
false discovery rate (fdr)-adjusted fvalue, is plotted on the j-axis. Yellow and The relative network-level biological impact for each exposure group was compared with the sham groups after a 30-day O 8 15 23 15 23 50
cyan dots highlight genes that are statistically significantly upregulated and exposure. The surface area of each segment is proportional to the contribution of each network perturbation (shown as SCU3ME o THS22
downregulated, respectively (fdr < 0.05). Compared with the SR4F reference percentage in the labels) within each exposure group. The impacted biological processes in the lung were related to cell
cigarette smoke, THS 2.2 aerosol induced a minor response in lung tissue fate, cell stress, and inflammation after exposure to 3R4F reference cigarette smoke. Groups exposed to THS 2.2 aerosol Heatmap summarizing the inflammation subnetworks that were significantly perturbed in at least one treatment after nose-only exposure. Amang those subnetwaorks,
(although applying a higher dose of nicating). showed a much smaller network perturbation compared with 3R4F-exposed groups. neutrophil and macrophage signaling were majorly impacted after exposure to the SR4F reference cigarette but much less impacted after THS 2.2 exposure. This was also
reflected in the differential cell count of BALF neutrophils and macrophages as well as in the amount of inflammatory mediators measured in the BALF.
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