
 This poster describes an example of a Bayesian analysis of a split-split-plot design. The obtained results are
largely in-line with the frequentists ones, but offer two major advantages. First, the results can be interpreted by
means of Bayesian-probabilities with the focus being more on effect sizes rather than on p-values (note that p-
values estimated under the Bayesian context are similar to the classical frequentist ones). Second, the posterior
distributions obtained during this initial work of system characterization can be used as prior information when
additional experiments will be performed, offering a natural way to use this historical information.

 Given the limited number of runs (N = 5), the posterior of the variance between runs is not dominated by the
likelihood and thus still influenced by the choice of the prior. For future studies, increasing the number of runs
should help. The choice of the priors do not seem to play a role in the posterior distributions of all other model
parameters, meaning that the choice of the prior should have a minimal effect on the main conclusions regarding
the characterization of the system (not discussed here).

 Additional model complexity could be considered, for instance additional interactions between fixed factors or
autocorrelations between wells.

 Pertaining to the implementation, the model was also implemented in Stan (through the rstan package) and
results revealed to be similar.
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Philip Morris International is developing potential Reduced Risk Products1 (RRPs) and is conducting a series of
clinical and preclinical studies to assess the health risks associated with these products. Among these, studies are
performed to investigate the biological response of organotypic systems (e.g. bronchial or nasal tissues) to exposure
of aerosols generated from RRPs. In this context, the Vitrocell® aerosol exposure system is used and allows the
simultaneous exposure of multiple organotypic tissue cultures to different doses of a given aerosol in vitro. As there
are complex aerosol dynamics involved, it is of prime interest to characterize this exposure setup and understand its
stability in order to ensure that organotypic tissue cultures can indeed be reproducibly exposed to the desired dose
of the aerosol of interest.

In one such characterization study, we investigated the impact of aerosol particle sizes and concentrations on the
aerosol delivery to the exposure chambers in the system. This study involved the generation of various fluorescently
labelled glycerol aerosols of given particle sizes, exposure of the Vitrocell® system to specific concentrations of
these aerosols, and the quantification of the delivered fluorescent activity. This experiment resulted in a split-split-
plot error control design that we analyzed with a Bayesian approach.

Introduction

1Reduced Risk Products (“RRPs”) is the term we use to refer to products with the potential to reduce individual risk and population harm in
comparison to smoking cigarettes. PMI’s RRPs are in various stages of development and commercialization, and we are conducting
extensive and rigorous scientific studies to determine whether we can support claims for such products of reduced exposure to harmful and
potentially harmful constituents in smoke, and ultimately claims of reduced disease risk, when compared to smoking cigarettes. Before
making any such claims, we will rigorously evaluate the full set of data from the relevant scientific studies to determine whether they
substantiate reduced exposure or risk. Any such claims may also be subject to government review and authorization, as is the case in the
USA today.

Figure 2: Schematic representation of the VITROCELL® 24/48
exposure system.
A climatic chamber houses an exposure module, which consists of a
dilution/distribution system, on top of a cultivation base module. In the
base module, up to 48 wells can be exposed simultaneously. The base
module has a format of 8 rows x 6 columns.
The delivery of aerosol was achieved by individual trumpets, delivering
the aerosols from the dilution/distribution system to the wells of the
cultivation base module.
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The considered statistical model was:

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖 + 𝛼𝛼𝛽𝛽 𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑖𝑖 + 𝛿𝛿𝑖𝑖 + 𝛼𝛼𝛽𝛽𝛾𝛾 𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
where
• 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the response variable (disodium fluorescein amount) corresponding to aerosol i (i = 2, …, 5), run j (j = 1,

…, 5), concentration k (k = 2, …, 7), and well l (l = 2, …, 6);
• 𝜇𝜇 is the intercept (corresponding to the average obtained for 𝛼𝛼1, 𝛾𝛾1, 𝛿𝛿1);
• 𝛼𝛼𝑖𝑖, 𝛾𝛾𝑖𝑖, 𝛿𝛿𝑖𝑖 are fixed effects corresponding to aerosol, concentration, and well respectively;
• 𝛽𝛽𝑖𝑖, 𝛼𝛼𝛽𝛽 𝑖𝑖𝑖𝑖, 𝛼𝛼𝛽𝛽𝛾𝛾 𝑖𝑖𝑖𝑖𝑖𝑖 are random effects corresponding to run, aerosol*run, and aerosol*run*concentration

respectively with 𝛽𝛽~𝑁𝑁 0,𝛽𝛽 , 𝛼𝛼𝛽𝛽 𝑖𝑖𝑖𝑖~𝑁𝑁 0,𝛼𝛼𝛽𝛽 , 𝛼𝛼𝛽𝛽𝛾𝛾 𝑖𝑖𝑖𝑖𝑖𝑖~𝑁𝑁 0,𝛼𝛼𝛽𝛽𝛾𝛾 ;
• 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 are assumed to be independent and identically distributed with 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖~𝑁𝑁 0, 𝜀𝜀 (and represent the

aerosol*day*concentration*well interaction plus an error term).

Our Bayesian approach used the following ‘vague’ priors (since no prior knowledge was available for this first
experiment):
• 𝜇𝜇,𝛼𝛼𝑖𝑖, 𝛾𝛾𝑖𝑖, 𝛿𝛿𝑖𝑖~𝑁𝑁 0, 1010 (default prior of the MCMCglmm package; 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≪ 100)
• 𝜀𝜀~𝑈𝑈 0,∞
• 𝛽𝛽,𝛼𝛼𝛽𝛽,𝛼𝛼𝛽𝛽𝛾𝛾~𝑈𝑈 0,∞ (prior type 1, main) or ~half−Cauchy 1000 (prior type 2) or 

~inv−Gamma 0.001,0.001 (prior type 3)

The model was implemented using the MCMCglmm package and one chain was run with 80’000 iterations and a
thinning parameter set to 10. The first 5’000 MCMC chain values were considered as ‘burning steps’. Note that a
classical frequentist approach was also used to estimate the model parameters by restricted maximum likelihood
for comparison with the Bayesian approach.

Statistical Methods

For each type of prior, the Bayesian model comprised 16 parameters representing the fixed effects, as well as 4
variance components induced by the topography of the design used. Examination of trace plots, autocorrelation
plots, and density plots showed no strong evidence of convergence issue for the 20 model parameters (see Figure 4
for representative parameters).

Results

Discussion
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Figure 1: Schematic representation of the generation of fluorescently
labelled glycerol aerosols of various mean particle sizes.
A Condensation Monodisperse Aerosol Generator (CMAG) was used to
generate fluorescently labelled glycerol aerosols. In brief, glycerol was
condensed on disodium fluorescein nuclei. The particle size depends
on the number of nuclei provided and the amount of glycerol vapor
used. Continuous, stable generation of aerosols with a wide range of
mean particle sizes (and controlled geometric standard deviation) can
be achieved.

The experiment consisted of 3 main steps:

Aerosol generation of various 
particle sizes (Figure 1)

Exposure to aerosols 
(Figure 2)

Quantification of aerosol 
delivery (Figure 3)

Figure 3: Schematic representation of the quantification of aerosol delivery.
In the cultivation base module, cell culture inserts were filled up with 100 µl of
phosphate-buffered saline (PBS). During the 28 minutes of exposure (corresponding to
our usual exposure duration of organotypic tissues), the disodium fluorescein was
trapped in PBS and its concentration (quantity) was subsequently measured by a
spectrophotometer.

Experimental study design:
In brief, over 5 different days (~run), 5 aerosols labeled A, B, C, D, E of various mean particle sizes were generated
per day (the target mean particle sizes were < 0.5 µm, 0.83 µm, 1.13 µm, 1.41 µm, 1.63 µm respectively). Each of
these aerosols was used as input to the Vitrocell® exposure system during 28 minutes, using 7 different
concentrations simultaneously: 69%, 54%, 32%, 19%, 13%, 10%, and 7%. In each row of the Vitrocell® receiving a
given concentration, 6 wells (number from 1 to 6) were exposed and separately measured for their disodium
fluorescent content.

Figure 3: Schematic representation of
the experimental design for Day 1.
The design was then replicated over 4
additional days (N = 5 days in total).

Run 1 (~Day 1)
A B C D E

69% 69% 69% 69% 69%
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

54% 54% 54% 54% 54%
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

32% 32% 32% 32% 32%
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

19% 19% 19% 19% 19%
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

13% 13% 13% 13% 13%
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

10% 10% 10% 10% 10%
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

7% 7% 7% 7% 7%
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

← Aerosol

← Well
← Concentration

← Run or Day

Study design expressed statistically:
This study design corresponds to a split-split-plot error control design without subsampling:
• ‘Days’ are (random) blocks;
• Whole-plot experimental units are assigned the levels of ‘aerosol’;
• Subplot experimental units are assigned the levels of ‘concentration’;
• Sub-subplot experimental units are assigned the levels of ‘well’.

Experimental Methods

Figure 4: Representative trace plots (prior type 1).
Left panel: intercept 𝜇𝜇, center: variance component 𝛼𝛼𝛽𝛽, right: variance component 𝛽𝛽 (log-scale). The various trace
plots showed a good mixing of the chain. Given the limited number of runs performed (N = 5), the variance
component due to ‘run’, 𝛽𝛽, was the most difficult parameter to estimate and, given its amplitude, is adequately
visualized on the log scale.

Figure 5: Representative density plots (prior type 1) and closeness with frequentist results.
Left panel: intercept 𝜇𝜇, center: variance component 𝛼𝛼𝛽𝛽, right: variance component 𝛽𝛽. The red straight line
highlights the frequentist estimate of the parameter. The representative density plots were usually in agreement
with their frequentist counterparts. This result is less obvious for the variance component due to ‘run’, 𝛽𝛽.

Figure 6: Influence of priors on 𝛽𝛽.
The figure contains the posterior probabilities of 𝛽𝛽 given the 3 types of
prior considered. As can be seen, the posteriors obtained under a uniform
prior (type 1) and a half-Cauchy (type 2) closely overlap, while the one
obtained under the inv-Gamma (type 3) tends to grant more weight to
lower values, highlighting the impact of the choice of the priors on the
posterior distribution of this parameter. It is worthwhile noticing that the
other model parameters were almost not affected by the prior choice.
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