Modeling controlled deposition of polydisperse aerosol
in the 3D in-vitro exposure system
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Introduction and motivation

Dosing of toxic substances in multi-well aerosol exposure systems is usually
controlled via air dilution of the flowing aerosol, while the deposition of those
substances on the biological inserts largely depends on the physical proper-
ties of the aerosol, i.e., droplet number, density and size of aerosol droplets.
Consequently, both the design of the experimental exposure systems as the
design of experimental studies/protocols using those systems become a chal-
lenging subject of the experimental and numerical investigations concerning
reliability, repeatability and reproducibility of performed studies. The neces-
sary system characterization can be performed both experimentally |1| and
numerically [2]. In this context we present a multi-species aerosol model capa-
ble of capturing all major physical phenomena of the aerosol dynamics inside
an in-vitro exposure system |[3].

VITROCELL® 24/48 climatic chamber MO deling Obj eCt ives :

e predict transport and evolu-
tion of multispecies polydisperse
aerosols

e compute local aerosol deposition in
complex geometries (dosimetry)

e support bridging in-vivo and in-
vitro biological research
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Preaiup Approach:
o two-moment model (fixed droplet size
= | deposition distribution width o) [4]
o sectional model (resolved size distribu-
tion with discretized sections) [5]

omputational Fluid Dynamics with sectional aerosol modeling

Coupling of velocity u, pressure p, density p and temperature 1" along with the equa-
tion of state (ideal gas law and incompressible liquid) and material properties: spe-
cific heat (c¢,), conductivity (k), viscosity (u), enthalpy of vaporization S; and
viscous stress tensor 7 [6]:
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mass conservation
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momentum conservation
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energy conservation

Aerosol introduced by vapor Y,, and liquid Z,, mass fractions for /N species and par-
ticle number densities (N, = pM,) for @) sections accompanied by sources Jy,, , Jz,
and Jur, including aerosol processes (nucleation, condensation/evaporation and co-
agulation). The flux f; accounts for the total mass transfer due to Stokes-Einstein
droplet diffusion D, and drift (Stokes drag and gravitation) driving deposition [3]:
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n-species vapor mass fraction transport

0 (pZn) + 0;(pZnuy) = —0;(Z7" £ 2n) + Tz,
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n-species liquid mass fraction transport
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g-section particle number density transport

Consistency is guaranteed by computations of the local mean vapor to liquid density
ratio v = p./p; and total local vapor Y = )Y, and liquid Z = > Z, mass.
Vapor diffusion (Hirschfelder-Curtiss approximation) is included in Jv,.

Application: aerosol deposition in 3D geometry

ol The figure shows the flow and the
- deposition of aerosol in a Vitrocell
Eo 24 /48 trumpet. At the exit of the
0,001 trumpet, the flow slows down and
E creates a region of null velocity and
uniform aerosol concentration over
deposition the deposition plate. The gentle flow
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; around the trumpet smoothly trans-
ESOOOOO ports the aerosol. Thus no deposition
400000 by impaction has been observed.
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Aerosol deposition flux versus droplet Aerosol deposition efficiency n versus
diameter for three sampling flow rates droplet diameter for the three sam-
(1ml/min, 2ml/min, 4ml/min). Depo- pling flow rates. Efficiency decreases
sition for larger droplets is dominated with increasing flow rate. Full deposi-
by gravity (o< Ny * p; * dg) and inde- tion can be reached for large droplets
pendent on the sampling rate. and low sampling rates.

Concluding remarks

e A computational platform for CFD simulations of multispecies evolving
aerosols including drift and deposition has been developed (3, 4, 5, 6].

o Aecrosol deposition in a Vitrocell® 24/48 system was analyzed for differ-
ent droplet sizes and trumpet sampling rates.

e Deposition varies significantly with the aerosol droplet size, and reaches
a minimum for droplets of about 0.2um.

o Large droplets (>0.4um) deposit in the Vitrocell® 24/48 trumpet only
due to a settling/gravitational mechanism which is independent on the
sampling rate and increases with the droplet size. As a consequence
the deposition efficiency, or the fraction of the sampled aerosol that
deposits on the plate, decreases with increasing sampling rates.

e On-going work: investigations of non-isokinetic sampling and deposition
for evolving multispecies aerosols |2].

e Future work: further validation, extension and refinements of aerosol
physics models.
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