

Introduction and Objectives

- > Volatile organic compounds (VOC) in breath are produced either by various biochemical processes within the body or as a result of external factors such as environmental exposure, lifestyle, diet, and/or therapeutic interventions.
- > Real-time breath analysis is an advantageous analytical approach by which information about physiological changes over a short period of time can be obtained. Real-time analysis of human exhaled breath enables rapid monitoring of exposuredriven absorption of exogenous VOCs from the lungs into the bloodstream.
- \succ The aim of this study was to detect, confirm, and monitor the absorption of exogenous compounds originating from cigarette smoke and various inhalable products from the lungs into the bloodstream.

Monitoring of exogenous compound kinetics in exhaled breath

FOSSILIONTECH

Methods

- Q Exactive HF mass spectrometer.
- and total exhaled volume (L) in real-time.
- detected by high-resolution MS.
- ionization mode by scanning m/z 50–600 at a resolution of 240,000.
- collisional dissociation (HCD).

T. Zivkovic Semren * ¹, C. Laszlo¹, M. Gomez², G. Vidal-de-Miguel², J. Hoeng¹, M. Peitsch¹, N. Ivanov¹, P.A. Guy¹ ¹PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland ² Fossil Ion Technology

> Human exhaled breath samples were analyzed with an Exhalion Super SESI coupled to a

 \succ The system measures CO₂ levels (%), pressure drop (mbar), exhalation flow rate (L/min),

> The compounds present in exhaled breath are ionized by the Super SESI interface and

 \succ Human volunteers exhaled before and after exposure to specific interventions, at a rate of one exhalation per minute. MS acquisition was performed in full-scan positive

> Putative compound identification was supported by the mass accuracy of the instrument (5 ppm tolerance) and further confirmed by tandem MS experiments using high-energy

- thereafter.
- on the type of exposure.
- a similar washing pattern as nicotine.
- breath samples.

Competing Financial Interest – The research described in this poster was sponsored by Philip Morris International

*tanja.zivkovicsemren@pmi.com

Condusions

 Exhalion Super SESI coupled to a Q Exactive HF MS system allows rapid monitoring of the absorption of exogenous compounds originating from cigarette smoke and from various inhalable products from the lungs into the bloodstream.

✓ Nicotine, one the main compounds inhaled upon smoking, showed a well-defined washout pattern: The intensity increased right after smoking and gradually decreased

✓ Indole, known as an endogenous metabolite, showed a relatively flat profile depending

Camphor, and pyridoxal—which were confirmed in a tested inhalable product—showed

 \checkmark These results demonstrate the benefits of this device in studying real-time exhaled