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SUMMARY EXPERIMENTAL DESIGN / METHODS
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CONCLUSIONS

« Systems toxicology approach was applied for the assessment of THS2.2 aerosol compared to CS on an organotypic gingival epithelium model. Multiple endpoints
(e.g., cytotoxicity, transcriptomics, and metabolomics) were combined toward a comprehensive assessment of the exposure effects.

* Major morphological alterations (loss of cell adhesion, keratinization, Figure 7) and cytotoxicity (max. ~30%, Figure 2) were observed after CS exposure but were
limited, if none, upon exposure to THS2.2 aerosol.

« Transcriptomic and metabolomic analysis indicated a general reduction of the impact in THS2.2 aerosol-exposed samples with respect to CS (~79% lower biological
Impact for the high THS2.2 aerosol concentration compared to CS, and 13 metabolites significantly perturbed upon THS2.2 aerosol exposure vs. 181 for 3R4F CS).

* Proinflammatory mediator analysis showed a higher impact in CS-exposed cultures compared to THS2.2 aerosol, with 11 analytes significantly altered by CS vs. 5
(common to CS-exposure condition) by THS2.2 aerosol, showing a reduced fold-change with respect to CS (Figure 6).

 Biological effects induced by CS, such as oxidative stress, xenobiotic metabolism, and inflammation-related processes, are relevant to the pathophysiology of
periodontal diseases.

e Overall, THS2.2 aerosol had a statistically significantly lower impact on molecular processes associated with the pathophysiology of human gingival organotypic The work reported in this publication involved a candidate Modified Risk Tobacco Product developed by Philip
cultures compared to CS. Morris International (PMI) and was solely funded by PMI. All authors are employees of, or (W. K. Schlage)

contracted and paid by Philip Morris International., except Brian R. Keppler (Metabolon Inc.).




		Group

		Name  reported

		Smoke/aerosol concentration (%)

		Nicotine concentration measured in PBS               (mg/L; average ± SEM)

		Nicotine dose deposited in 100 L PBS (g/insert/28 min; average ± SEM)



		3R4F low concentration

		3R4F (Low)

		25

		49.4 ± 1.89

		4.94 ± 0.189



		3R4F high concentration

		3R4F (High)

		35

		84.6 ± 1.43

		8.46 ± 0.143



		THS2.2 low concentration

		THS2.2 (Low)

		75

		54.6 ± 2.60

		5.46 ± 0.260



		THS2.2 high concentration

		THS2.2 (High)

		100

		100.4 ± 4.83

		10.04 ± 0.483
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