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Systems toxicology analysis of cardiovascular and respiratory endpoints from Apoe” mice showed similar effects after switching to a
candidate modified risk tobacco product, THS 2.2, or to smoking cessation
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e The exposure to 3R4F cigarette smoke resulted in significant levels of pulmonary
iInflammation, decline in pulmonary function, and histopathological changes. These
phenotypic changes were coherent with the molecular data.

e Chronic exposure to an aerosol from the THS2.2 resulted in very little difference In
all measured parameters related to COPD and CVD when compared to the filtered

air-exposed animals.

e The biological response to switching to a THS2.2 aerosol or filtered air following
2 months of 3R4F cigarette smoke exposure were very similar between the two

conditions across the spectrum of endpoints assessed,

positive effect.

and showed a generally

e Differential ‘omics’ profiles associated with 3R4F exposure returned to nearly
filtered air-like level following either switching to a THS2.2 aerosol or filtered air.

e Histopathological assessment also showed a marked effect of switching, In
which a partial or complete (depending on the inflammatory cell type) reversal

of pulmonary inflammation was observed.
e These data collectively indicate a halting or regressio

n of the disease genesis

following switching from conventional cigarette to THS2.2 aerosol in Apoe™.

3RA4F cigarettes

3RA4F reference cigarettes
were purchased from the
University of Kentucky
(http://lwww.ca.uky.edu/refcig).
The candidate MRTP, THS2.2,
consisted of a stick containing
a tobacco plug inserted into a
holder that heats the tobacco

Electrically heated Aerosol .

tobacco product / in a controlled way to ensure

tobacco (heat) stick combustion temperatures are
not reached. The controlled
heating of the tobacco
generates an aerosol
containing mainly water,
glycerin, nicotine, and tobacco
flavors.
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Female Apoe”’ mice were exposed to 3R4F (600 mg/m3® TPM), THS2.2 (matched to the nicotine in 3R4F — 30 ug/l) or filtered air < R .
. . ' am .
for 3 hours per day, 5 days per week, for up to 8 months. After 2 months of exposure to 3R4F, switching and cessation groups
- - 0 0 - 0 - 3
were exposed to aerosol from THS2.2 or filtered air, respectively. Animals were observed on a daily basis, body weight TPM (mg/m°) 0(250) 598.5+27.1(256)  368.9 £54.4 (250)
progression was monitored twice per week, exposure parameters (carboxyhemoglobin (COHb) in blood and nicotine metabolites Nicotine (mg/m?) 0(63) 29.4 £ 2.2 (256) 28.6 £ 3.2 (250)

In urine) were measured 3 times during the study. Dissections were performed after 1, 2, 3, 6, and 8 months of exposure. At
each time point animals were allocated for the following end points: bronchoalveolar lavage fluid (BALF), identification of
Infiltrated inflammatory cells in lungs and multi-analyte (cytokines/chemokines) profiling; histopathological evaluation and
morphometry of lungs; lung function; plaque surface determination and an extensive molecular high throughput analysis
(transcriptomics, proteomics and lipidomics).
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NPA's/max(NPA's) per SubNetwork

Carbon monoxide (ppm) 0.1 +£0.1 (250) 650.9 + 34.2 (256) 14.5 + 2.2 (250)

Acetaldehyde (mg/m?) n.d. 32.9 + 2.3 (50) 7.5%0.7 (49)
Acrolein (mg/m3) n.d. 3.1+£0.2 (50) 0.3+£0.0 (49
Formaldehyde (mg/m3) n.d. 0.6 £ 0.1 (50) 0.1 £ 0.0 (49

Values given in the table are mean £+ SD. Numbers in brackets are the number of measurements done during the study.
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