

Implementation of an Advanced Workflow to Enhance the Confidence in Compound Identification for Non-Targeted GC-HR-MS Applications

40th ISCC Symposium, May 29 - June 04, 2016

Eric Dossin, Antonio Castellon, Pierrick Diana, Pavel Pospisil, Mark Bentley, Philippe Guy

Philip Morris International R&D

PMI SC ENCE

Reduced-Risk Products ("RRPs") is the term the company uses to refer to products with the potential to reduce individual risk and population harm in comparison to smoking combustible cigarettes.

PMI's RRPs are in various stages of development and commercialization, and we are conducting extensive and rigorous scientific studies to determine whether we can support claims for such products of reduced exposure to harmful and potentially harmful constituents in smoke, and ultimately claims of reduced disease risk, when compared to smoking combustible cigarettes.

Before making any such claims, we will **rigorously evaluate the full set of data** from the relevant scientific studies to determine whether they substantiate reduced exposure or risk. Any such claims **may also be subject to government review and approval**, as is the case in the US today.

Outline

- Smoke as complex matrix
- GC-HR-MS instrumentation
- Our workflow for complex matrix characterization
- Modeling of Linear Retention Index
- Creation of library with predicted LRI
- Case study (2 examples)
- Conclusion and next steps

PMI Science

- PMI is working on various Reduced Risk Products delivering nicotine containing aerosols
- In this context it is important to fully characterize the chemical composition of these aerosols, in particular aerosols produced by heating tobacco compared to smoke from cigarettes
- For analytical method development purpose, we use a reference cigarette (3R4F)

Generation of complex matrix

- Smoke sample generated on a linear smoking machine

PMI SCIENCE PI IIL PIVOTRIS INTERNATICINAL

Analytical Technique: GC-High Resolution (GC-HR-MS)

GC-HR-MS_1 (7200A Agilent Q-TOF-MS)

Volatile and semi-volatiles LRI from 500 to 1,900

GC-HR-MS_2 (7200B Agilent Q-TOF-MS)

Apolar and polar LRI from 1,000 to 3,000

Goal is to screen the broadest range of smoke constituents. Non-Targeted Screening

Automated Workflow for Identification in Complex Matrices

Purpose

The present work focuses on building a relevant library containing LRI prediction.

- To predict LRI we used two softwares:
 - 1. RapidMiner-Dragon
 - 2. ACD/Labs ChromGenius

- To build a relevant LRI prediction system 552 molecules were used:
 - 1. Experimental LRI
 - 2. Quantitative Structure-Property Relationship (QSPR) and structure similarities

The experimental linear retention indices were randomly split as training (n=401) and test (n=151) sets. Validation set (n=23) confirmed the great performance of both prediction models.

Assessment of the Prediction Models (Test Set and Validation Set)

Unique Compounds & Spectra Database

UCSD is our in-house database that contains 11567 molecules:

- 7000 chemicals reported as present in tobacco plant and smoke¹
- 3000 molecules associated with flavor properties^{2,3}

1013 accurate mass spectra and LRI are registered in UCSD

¹ The Chemical Components of Tobacco and Tobacco Smoke, A. Rodgman, T.A. Perfetti, 2013, 2nd Ed. CRC press. ² Leffingwell, J. C.; Young, H. J.; Bernasek, E. Tobacco flavoring for Smoking Products, *R. J. Reynolds Tobacco Company, Winston-Salem*, **1972**. ³ EFSA flavoring substances database

UCSD Web Interface

	Chamical classification	Dhysical Moasuramonts
Back		Filyardi medaurententa
I Mol Code: PMI0009992	Thiophene	Ref. OR: Ref. BP: Ref. MP:
		Calculated Mol. Properties
_	Generated Names / Structure Codes	Mol. Formula: C6 H8 S
	Smiles:	Mol. Weight: 112.19272 g/mol Isotopic Mass: 112.03467 g/mol ACD/LogP: 2.6 Solubility (w): 0.01 mol/L
	InChI: InChI: InChI:	H. Bond Donor: 0 Drug-like: Yes Lead-like: Yes
atch List Collapse All Expand All Each level of this list corresponds to one entity: molecule (neutral compound e.g. PM(0000001))	IUPAC:	Predicted ADMET Properties ① Hum. Intestinal Abs.: Moderate Blood Brain Bar. Penetr.: High Plasma Protein Binding: Non binder
- substance (molecule + counter ion, hydrate e.g.	Alternatif Identifiers	Hepatotoxicity: Toxic
- batches (physical or literature substances, e.g. BC0000014).	Common Name 3,4-Dimethylthiophene	Literature Data
Batches matched by the search query are marked with	3,4-dimethylthiophene	
	Thiophene, 3,4-dimethyl-	Mass Spectra
PMI0009992 PMI0009992-A BC000014260 PC000014260	1 - 3 632-15-5	
BC000015495	1-1	

Creation of the UCSD Compound Library

- Predicted LRI of flavors and tobacco-related compounds database when there implemented in our current identification workflow.
- 6,053 molecules were predicted with LRI values between 500 and 1,900
- 3,646 molecules have an available nominal El Mass Spectra (NIST or Wiley)

UCSD Compound Library

🚺 Libr	rary Editor - Cor	nverted_All_UCSD_LRI.mslibrary.xml				I R	Predicti	ion (- • •
File	Edit Tools	Help							
°l 🗁	🛃 X 🖻	🛍 🤊 (* 🖧 🏦 🔎 × 👘							
Compo	und Table								
	Compound ID	Compound Name	Alternate Names	CAS#	Formula	Molecular Weight	Retention Index	MolFile	Last Edit 🔶
	9	propyldithio propane	PMI0009753	629-19-6	C6 H14 S2	150.053691	3 1126.1477	Accelrys03	3/15/2016 4:50
	12	Thiophene, tetrahydro-2-methyl-	PMI0009788	1795-09-1	C5 H10 S	102.05032	925.6817	Accelrys03	3/15/2016 4:51
	17	(Z)-2-(1'-PROPENYL)TOLUENE	PMI0009016	2077-33-0	C10 H12	132.09390038	5 1075.2750	Accelrys03	3/15/2016 4:51
	18	Furfuryl formate	PMI0003319	13493-97-5	C6 H6 O3	126.03169405	9 1048.5908	Accelrys03	3/15/2016 4:51
•	24	Ethana 1 (a athulabanul) 1 abanul III	DMINNESSE	10000 70 0	010 010	210 14005057	1710 0227	Accelus02	2/15/2016 4-51
Spectru	ım View						Properties		
Max.	# of panes: 1	- 🔄 🚰					Abundance Value	s 🛄 8.0,1.0,	7.0,5.0,132.0,15 🔺
	+ Scan Disul	ide, dipropyl (629-19-6)					Acquired Retentio Base Peak Abund	n Time Jance	E
×10	³	43.0		HEC			Base Peak Mz		
	_						Collision Energy		
0.	2-	27.0	1	08.0	15		Compound ID	1	
	o-L	66.0 74.0					Highest MZ		
	10 2	20 30 40 50 60 70	80 90 100	110 120 1	30 140 19	50 160 👻	Ion Polaritu	Positive	

LRI predictions were associated with the 3,646 nominal EI mass spectra extracted from commercial libraries.

Different Output With the New Workflow

Implementation of predicted LRI allows alternative proposals.

1st Example / Evaluation

15

1st Example / Evaluation

		LR	Predict	ion
Compound Name	Match	CAS#	Library Retention	Component RT: 15.5878 x10 ^s 129.0647
1H-Indene, 3-methyl- (CAS)	82.07	767-60-2	1211.708430938	0.75- 0.5
2-Methyl-1H-indene	81.29	2177-47-1	1214.3176031238	0.25 51.0229 67.0548
1H-Indene, 3-methyl- (CAS)	80.99	767-60-2	1211.708430938	
2-Methylindene	79.56	2177-47-1	1214.3176031238	x103 129,0647 0.5 510000 00 00 00 00 00
2-Methyl-1H-indene	79.54	2177-47-1	1214.3176031238	0-39 51 57 64 77 89 102 1
1H-Indene, 3-methyl- (CAS)	77.88	767-60-2	1211.708430938	50 60 70 80 90 100 110 120 130 140 150
1H-Indene, 3-methyl-	73.41	767-60-2	1211.708430938	2-Methyl- ene
1H-Indene, 3-methyl- (CAS)	73.38	767-60-2	1211.708430938	
2-Methyl-1H-indene	57.38	2177-47-1	1214.3176031238	
1H-Indene, 3-methyl- (CAS)	54.89	767-60-2	1211.708430938	

Alternative hits proposal

PMI SCIENCE PIER PINORES MERNATION	AL
16	ŝ

	Compound Name	Formula	CAS#	Component	Library RI	Dolta Ri	Match	Library File	Component
1		▼	₩	RI 🖵			Factor 🖵		- Area 🔍 👻
353	1H-Indene, 3-methyl-	C10 H10	767-60-2	1204.02	1211.71	7.69	89.2	UCSD.mslibrary.xml	1776138
354	1H-Indene, 3-methyl-	C10 H10	767-60-2	1214.03	1211.71	-2.33	82.1	UCSD.mslibrary.xml	1365794
355	UNDECANE, 2,6-DIMETHY	C13 H28	17301-23-4	1218.05	1211.13	-6.92	63.4	UCSD.mslibrary.xml	270040
356	3-Buten-2-ol	C4H8O	598-32-3	1220.75			65.4	NIST14.L	391516

1st Example / Confirmation

1	Compound Name	Formula	CAS#	Component RI 🗨	Library RI	Delta RI	Match Factor 🖵	Library File	Component v Area v	
353	1H-Indene, 3-methyl-	C10 H10	767-60-2	1204.02	1211.71	7.69	89.2	UCSD.mslibrary.xml	1776138	
354	1H-Indene, <mark>2</mark> -methyl-	C10 H10	2177-47-1	1214.03	1214.31	0.28	81.3	UCSD.mslibrary.xml	1365794	→ 2-Methyl-1H-indene is confirmed
355	UNDECANE, 2,6-DIMETH	YI C13 H28	17301-23-4	1218.05	1211.13	-6.92	63.4	UCSD.mslibrary.xml	270040	
356	3-Buten-2-ol	C4H8O	598-32-3	1220.75			65.4	NIST14.L	391516	M PMI SCIENCE

F

Evaluation of NIST Proposals

		Compound Name	Formula	CAS#	Comp	onent	Library RI	Dalta RI	Match	ı	Library File	Componer	nt
	1			CA3#	RI	•			Facto	۳		Area	Ŧ
	353	Cycloprop[a]indene, 1,1a,	C10H10	15677-15-	3 3	1204.02				92.1	NIST14.L	17761	38
1	354	Naphthalene, 1,2-dihydro	C10H10	447-53-0	-	1214.03				82.6	NIST14.L	13657	94
	355	3-Hexanone, 2,2-dimethy	C8H16O	5405-79-8		1218.05				71.1	NIST14.L	2700	40
	356	3-Buten-2-ol	C4H8O	598-32-3	-	1220.75				65.4	NIST14.L	3915	16
(compo	und Name	Mach Factor	CAS#	Library	LRI_EXP	LRI_Prediction	LRI score	Rank				
ſ	Naphth	alene, 1,2-dihydro-	82.6	447-53-0	NIST14.L		1237.	17 57%	3 rd				
4	yclopr	op[a]indene, 1,1a,6,6a-tetrahydro-	82.3	15677-15-3	NIST14.L		1172.	88 34%	5 th				
	H-Inde	ene, 3-methyl-	81.8	767-60-2	NIST14.L		1211.	71 81%	1 st		Alternative ranki	ng	
1	-Meth	ylindene	81.4	2177-47-1	NIST14.L	1214 024	1214.	<mark>32</mark> 81%	1 st		using the I RI mod		
E	Benzen	e, 1-methyl-4-(1-propynyl)-	80.0	2749-93-1	NIST14.L	1214.034	1136.	45 13%	7 th		using the Lixi mot		
1	,4-Dih	ydronaphthalene	79.9	612-17-9	NIST14.L		1246.	90 42%	4 th				
E	Benzen	e, (1-methyl-2-cyclopropen-1-yl)-	79.7	65051-83-4	NIST14.L		1114.	<mark>95</mark> 9%	8 th				
1	H-Inde	ene, 1-methyl-	79.0	767-59-9	NIST14.L		1167.	63 28%	6 th				

The combination of mass spectral similarity and LRI modeling enhances the confidence in compound identification.

2nd Example / Evaluation

As Match Factor > 90%, the confidence in identification is very high. Let's go further to identify this co-eluting compound!!!

Evaluation of NIST Proposals

		Compound Name	Formula	CAS#	Component	Library RI	Delta	Match	Library File	Component
	1		-	v	RI 👻	· · · · · · · · · · · · · · · · · · ·	RI 👻	Factor 🖵		Area 🚽
2	221	Benzamide, O-[(phenylamino)carbo	C14H13N3O2	1000112-26-3	992.14			58.7	NIST14.L	606404
	222	Benzene, 1-ethyl-2-methyl-	C9H12	611-14-3	992.25			91.0	NIST14.L	6329363
2	223	Benzene, [(methylsulfinyl)methyl]-	C8H10OS	824-86-2	992.52			88.8	NIST14.L	696399
2	224	2-Heptyne-4-one	C7H10O	71932-98-4	993.29			69.5	NIST14.L	1051796

Compound Name	Mach Factor	CAS#	Library	LRI_EXP	LRI_Prediction	LRI score	Rank
Benzene, 1-ethyl-2-methyl-	91.0	611-14-3	NIST14.L		966.98	55%	5 th
Benzene, 1-ethyl-4-methyl-	90.1	622-96-8	NIST14.L		992.19	90%	1 st
Benzene, 1-ethyl-3-methyl-	89.4	620-14-4	NIST14.L	992.2521	971.37	62%	4 th
B enzene, <mark>(1-methylethyl)</mark>-	89.0	98-82-8	NIST14.L		974.74	68%	3 rd
Mesitylene	87.8	108-67-8	NIST14.L		980.59	77%	2 nd

Alternative ranking using the LRI model !!!

Already parts of our accurate mass library

Again, the combination of mass spectral similarity and LRI modeling improves the identification process

Final Confirmation

Both ethyl-toluene isomers were confirmed in the smoke sample explaining the co-eluting peaks.

Conclusion & Next Steps

- Combination of state-of-the-art instrumentation with advanced chemoinformatic tools (Predicted LRIs using QSPR methods) enhance the confidence level in compound identification
- This combined approach reduces the list of putative compounds to purchase for final confirmation, leading to
 - Shortened time for compound identification
 - Reduced total cost for ordering chemicals
 - Reduced rate of false positive compound identification
- Automation of the workflow reduces the time for complex matrix characterization

Implement the LRI prediction in the MassHunter Unknown Analysis software

Dossin, E. *et al.* Prediction Models of Retention Indices for Increased Confidence in Structural Elucidation during Complex Matrix Analysis: Application to Gas Chromatography Coupled with High Resolution Mass Spectrometry coming in *Anal. Chem.* in 2016

22

THANK YOU

eric.dossin@pmi.com

Implementation of an Advanced Workflow to Enhance the Confidence in Compound Identification for Non-Targeted GC-HR-MS Applications

40th ISCC Symposium, May 29 - June 04, 2016

Eric Dossin, Antonio Castellon, Pierrick Diana, Pavel Pospisil, Mark Bentley, Philippe Guy Philip Morris International R&D

Analytical Technique: GC-High Resolution (GC-HR-MS)

GC-HR-MS_2 (7200B Agilent Q-TOF-MS)

Apolar & Polar LRI from 1000 to 3000

Column HP-5MS (30m, Ø=0.25mm) 5% phenyl-arylene 95% dimethyl-polysiloxane

Carrier gas: He

Injection volume: 0.5 µL

Injection mode split 5:1

Sample spiked with several deuterated IS

Full scan acquisition mode (*m*/z 40-620 amu)

BFTSA derivatization (labile hydrogens, alcohols, carboxylic acids, amides...)

GC-HR-MS_1 (7200A Agilent Q-TOF-MS)

Volatile and semi-volatiles LRI from 500 to 1900

Column DB-624 (30m, Ø=0.25mm) 6% cyanopropyl-phenyl 94% dimethyl-polysiloxane Carrier gas: He Injection volume: 250 μL (headspace) 1 μL (liquid)

Injection mode split 5:1

Full scan acquisition mode (m/z 20-500 amu)

Goal is to screen the broadest range of smoke constituents

Accuracy Data of Predicted vs Experimental LRI Values

Mathematical Formula

 $LRI \, Score = \frac{Match \, Factor \times LRI_{Exp}}{LRI_{Exp} + (LRI_{Pred} - LRI_{Exp})^2}$

