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Introduction

Ever-increasing scientific literature enhances our understanding of how toxicants impact biological systems, and there is an increasing demand from systems biologists/toxicologists to have access to the ex-
Isting knowledge in a structured, and preferably, computable format (1-2).

Knowledge curation into computable format requires a well-defined structured and standardized language and entity/relationship recognition software for efficient knowledge retrieval. We recently introduced
the BEL Information Extraction workFlow, (BELIEF) (3). BELIEF automatically extracts biological entities and causal relationships from text and converts them into a computable language, the biological ex-
pression language (BEL), a machine-and human-readable language that codes molecular relationships as semantic triplets: subject-relationship—object (www.openbel.org). BELIEF also allows human review
and correction of the proposed statements.

Here we show how the semi-automated curation workflow employing BELIEF facilitates the construction of causal biological network models describing disease specific processes and an efficient, objective
and specific interpretation of molecular data.

Biological Expression Language (BEL) Text mining pipeline

PubMed ID 11278443
“The CCND1 protein serves to directly increase the kinase activity of CDK4 to regulate cell cycle progression.”
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http://belief.scai.fraunhofer.de/BeliefDashboard/

The BEL Information Extraction workFlow (BELIEF)
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This schema describes the creation of computable knowledge from scientific literature to the biological mechanistic network model. The workflow is initiated with the selection of scientific articles and submission
to the text mining pipeline where all text documents are processed and biological entities and relationships are recognized, extracted and assembled. The curation interface within the knowledge extraction pipe-
line gives access to the assembled entities that are coded in a BEL statement. The curation interface assists curators in the review of knowledge triplets (statements). The extracted causal relationships are then
compiled into a mechanistic network model. The mechanistic network model represents molecular interactions accompanied with contextual information about the experiments.
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Graphical representation of the Atherosclerosis Plague Desta-
bilization network model built using BELIEF

NPA: Network Perturbation Amplitude
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) The dataset GSE10000 (5) was used to paint and score the network. It contains gene expression measurements from the

aortas of wild-type and ApoE" mice at 6, 32 and 78 weeks of age.
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Plaque Destabilization Network Perturbation Amplitude Score in aortas of ApoE-/- vs. wt mice
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The Atherosclerosis Plaque Destablilization network model contains 303 Nodes and 795 Edges.The o weeks 32 weeks 78 weeks

Symbol legend:*: O and K statistic p-values below 0.05 (in color), .O and K. p-values between 0.05 and 0.1(in grey).

The network is perturbed in a time -dependent manner: the net-
work perturbation amplitude (NPA) scores for the Atherosclero-
sis Plague Destabilization network model show an increase of
the network activation in ApoE-/- mice at 32 and 78 weeks of age
when compared with wt.
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and biological processes). Network edges connect two nodes and represent the cause-and-effect rela- Plaque Destabilization Network Leading Nodes in aortas of ApoE-/- vs. wt mice

tionship between the corresponding entities. Compiled BEL statements represent knowledge in the graph- ) o o g e S o |

. . L oty X ® T:if “bp(SDISplaque The NPA allowed identification of the key contributors to the perturba-

icalview. g R, MG 8 S Tt oo Ny = tion, referred to as leading nodes. Leading nodes for the Atherosclero-

. _ . . _ . O OB HHMGICR) ) BE - S @ -2 destabilization)(+) 3¢ , o _ e

33 full-text articles were selected and processed with the assisted curation pipeline. Three of the most § | - S B et B34 S < «p(MGI:Cxcl16)(+) & sis Plaque Destabilization network model are shown with a ™, for con-
T : : y . : o C y o "% bp(SDISiplague .22 B0 U omeicenn) i B trasts where the associated NPA is significant (Cxcl16, Ager and

connected nodes indicate biological processes of “plaque destabilization,” “atherogenesis,” and “positive |7 costabiatonys) 127 § S [panMMESHOAerosderosi)l®) - plaque destabilization, smooth muscle cell apoptosis).

regulation of smooth muscle cell apoptosis,” all of which closely reveal the context that was modelled e ep(G0B amooin muscecol”

US|ng the network 32 weeks * 78 weeks

References

Conclusions

BEL| EF iS a Semi-aUtOmated cu ratiOn WOrkﬂOW that COmbineS teXt mining Wlth q user friendly cu ratiOn in_ 1. Hoeng J, Deehan R, Pratt D, Martin F, Sewer A, Thomson TM et al. A network-based approach to quantifying the impact of biologically active substances. Drug discovery
_ _ _ _ _ . today. 2012;17(9-10):413-8. d0i:10.1016/j.drudis.2011.11.008.

terphase a”OW|ng the extraction of causal molecular relatlonshlps from scientific literature. 2. Hoeng J, Talikka M, Martin F, Sewer A, Yang X, Iskandar A et al. Case study: the role of mechanistic network models in systems toxicology. Drug discovery today.
2014;19(2):183-92. doi:10.1016/j.drudis.2013.07.023.

The standardized |anguage used by BELIEF enables the conversion of unstructured knOW|edge into 3. Szostak J, Ansari S, Madan S, Fluck J, Talikka M, Iskandar A et al. Construction of biological networks from unstructured information based on a semi-automated cura-

] _ tion workflow. Database : the journal of biological databases and curation. 2015;2015:bav057. doi:10.1093/database/bav057.

COmpUtable blOIOglCal network models. 4. Martin F, Sewer A, Talikka M, Xiang Y, Hoeng J, Peitsch MC. Quantification of biological network perturbations for mechanistic insight and diagnostics using two-layer
causal models. BMC bioinformatics. 2014;15:238. doi:10.1186/1471-2105-15-238.

Combined W|th backward reasoning algorith ms, the network models bUlIt USing BELl EF can be used t() 5. Grabner R, Lotzer K, Dopping S, Hildner M, Radke D, et al. (2009) Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia

: : : . o . : : . of aged ApoE-/- mice. J Exp Med 206: 233-248.
extract biological significance from noise for quantitative impact assessment. 2014:15:238. doi:10.1186/1471-2105-15-238.
ek = o8 Systems Toxicology 2016
""?_1,1’ RfE;? PMIT BESFARCH & DEVELOPMENT Real World Applications and Opportunities

et St il This work was funded by Philip Morris International
e y Fhiip January 27-29, 2016



