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Introduction. Smoking is one of the major lifestyle-related risk factors for periodontal diseases.

Smoking can affect the structure of the epithelial mucosa, impair the inflammatory response, and 3R4F THS2.2 Air Air
change the redox status of the oral cavity [1]. Harm reduction through the development of Modified Risk Lo Endpoints 2‘: — sk s — rerosal
Tobacco Products (MRTP) provides a promising opportunity for adult smokers who would otherwise ; ; y j :::m'“w N @@ ”?3 DilutionDistribution m@' @
continue cigarette smoking. An MRTP is defined by the U.S. Family Smoking Prevention and Tobacco Y YA sty = D) Module of the Vitrocel @.'LQI =)

Control Act as “any tobacco product that is sold or distributed for use to reduce harm or the risk of ¥ v J Pro-inflammatory markers — = 4 — >

tobacco related disease associated with commercially marketed tobacco products”. The Tobacco j ) E:t:tﬂf:i e A e
Heating System (THS) 2.2 is a candidate MRTP that uses a precisely controlled heating device into —smargn) A — THS2.2 (High)
which ?[?]oecially designed tobacco product, the Tobacco Stick, is inserted and heated to generate an l > L+ s oy Citivation Base Module A - A
aerosol [2]. R - - - - - - yaeed -
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Objectives. The objective was to assess — using a systems toxicology approach— how aerosol from a
heat-not-burn technology-based candidate MRTP, THS2.2, compared to reference (3R4F) cigarette
smoke (CS), affects human gingival epithelial organotypic cultures.

Materials & methods. Human gingival epithelial organotypic cultures (EpiGingival™; MatTek) were
repeatedly exposed (3 days) for 28 min to CS or THS2.2 aerosol at two concentration levels with

C Figure 1. Study design and exposure system. (A) Human gingival
epithelial organotypic cultures were exposed for 3 consecutive days to 28
min 3R4F CS or THS2.2 aerosol at two matching concentrations. Before

mi I I I I I 1C] I Group Name Smoke/aerosol Nicotine Nicotine dose
S|m|I_ar nicotine content.ll\/leasured endpomts included histology, gytotoxmty, release of promflammatory e b — Ll A each exposure, basolateral medium was collected for different assays (AK
mediators, transcriptomics (MRNA and miRNA), and metabolomics. Effects on the transcriptome were (%) measured in PBS  PBS (ug/insert/28 and cytokine assays) and replaced with fresh medium; apical PBS was
assessed by gene-set and causal network analysis. (mg/L);:I\\I:ragei min; average + SEM) replaced before each exposure. Different endpoints were analyzed at the
: : : : . . indicated time points during three experimental repetitions (with three
Results. Minor histopathological alterations and minimal cytotoxicity were observed upon THS2.2 3RAF low 3R4F (Low) 25 49.41.89 4.94%0.189 independent exposure runs each, n=9 total). (V) for 24 h mRNA/MIRNA
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3R4F high 3R4F (High) 35 84.6+1.43 8.46 +0.143
concentration

aerosol exposure, while marked toxicity was observed for CS. Causal network and gene-set analysis of
the transcriptomics data supported lower biological effects of THS2.2 aerosol than CS (e.g., with a

endpoint indicates that only one experimental repetition (n=3) was
performed (see [1] for 24h results). 1, aerosol inlet; 2, culture well; 3, culture

~79% reduction in the biological impact factor for the high concentrations). This included reduced THS2.2 low THS2.2 (Low) 75 54.6:% 2.60 5.46 % 0.260 insert; 4, apical PBS; 5, organotypic cuilture; 6, membrane; 7, medium. (B)
: . L. . . : Roncen e Vitrocell dilution and exposure system. (C) Selected CS/aerosol
effects of THS2.2 aerosol on oxidative stress, xenobiotic metabolism, and inflammation-related THS2.2 high THS2.2 (High) 100 100.4 + 4.83 10.04 + 0.483 concentrations and matching to delivered nicotine doses.

concentration

processes. Metabolomics confirmed that THS2.2 aerosol exposure was associated with lower oxidative
stress than CS. In support of lower effects on inflammation-related processes, THS2.2 aerosol
exposure resulted in a lower release of proinflammatory mediators than CS.
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Systems toxicology approach was applied for the assessment of THS2.2 aerosol compared to cigarette smoke (CS) on an organotypic gingival
epithelium model. Multiple endpoints (e.g., cytotoxicity, transcriptomics, and metabolomics) were combined toward a comprehensive assessment of the
exposure effects.

* Major morphological alterations (loss of cell adhesion, keratinization) and cytotoxicity (max. ~30%) were observed after CS exposure but were limited, if
not none, upon exposure to THS2.2 aerosol (Figure 2).

« Transcriptomic and metabolomic analysis indicated a general reduction of the impact in THS2.2 aerosol-exposed samples with respect to CS (~79%
lower biological impact for the high THS2.2 aerosol concentration compared to CS, and 13 metabolites significantly perturbed upon THS2.2 aerosol
exposure vs. 181 for 3R4F CS) (Figure 3 & 4).

* Proinflammatory mediator analysis showed a higher impact in CS-exposed cultures compared to THS2.2 aerosol, with 11 analytes significantly altered
by CS vs. 5 by THS2.2 aerosol, showing a reduced fold-change with respect to CS (Figure 6).

« Biological effects induced by CS, such as oxidative stress (Figure 4), xenobiotic metabolism (Figure 5), and inflammation-related processes (Figure 6),
are relevant to the pathophysiology of periodontal diseases.

o Overall, THS2.2 aerosol had a statistically significantly lower impact on molecular processes associated with the pathophysiology of human gingival

organotypic cultures compared to CS.
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		Group

		Name  reported

		Smoke/aerosol concentration (%)

		Nicotine concentration measured in PBS               (mg/L); average ± SEM

		Nicotine dose deposited in 100 L PBS (g/insert/28 min; average ± SEM)



		3R4F low concentration

		3R4F (Low)

		25

		49.4 ± 1.89

		4.94 ± 0.189



		3R4F high concentration

		3R4F (High)

		35

		84.6 ± 1.43

		8.46 ± 0.143



		THS2.2 low concentration

		THS2.2 (Low)

		75

		54.6 ± 2.60

		5.46 ± 0.260



		THS2.2 high concentration

		THS2.2 (High)

		100

		100.4 ± 4.83

		10.04 ± 0.483
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