Methods

A stepwise approach was used in line with the guidelines for the development and validation of self-report instruments [2].

Results

Development of a fit-for-purpose tobacco and nicotine product dependence instrument

Christelle Chirea1, Thomas Salibian2, Lisa Adetobi-Webb3, Esther F. Adebiyi1, Stefan Cano4, Joel Rose4, Reel Webouy6, Karl Fagerström1

Introduction and Objectives

- Nicotine dependence is a primary driver of tobacco-use behavior, a fact supported by research historically focused on cigarettes smokers.
- Currently, there are no generally accepted self-report instruments available to measure dependence in a directly comparable way across different tobacco- and nicotine-containing products (TNPs).
- As part of the AUDIT-K™ Toolbox (assessment of Behavioral Outcomes related to Tobacco and nicotine products) initiative [1], we developed a new fit-for-purpose instrument named ABOUT™-Dependence.

Table 2: Summary of the AUDIT-K™-Dependence Instrument item reduction

<table>
<thead>
<tr>
<th>Item description</th>
<th>Scale range</th>
<th>Validation categories</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Nicotine dependence</td>
<td>-10 to 10</td>
<td>0</td>
<td>1 to 5</td>
</tr>
<tr>
<td>Nicotine dependence</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nicotine dependence</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nicotine dependence</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nicotine dependence</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nicotine dependence</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nicotine dependence</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nicotine dependence</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nicotine dependence</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nicotine dependence</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nicotine dependence</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nicotine dependence</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **N** = number of items
- **n** = number of respondents
- **p** = significance level
- **a** = alpha coefficient
- **b** = beta coefficient
- **c** = gamma coefficient
- **d** = delta coefficient
- **e** = epsilon coefficient
- **f** = zeta coefficient
- **g** = eta coefficient
- **h** = theta coefficient
- **i** = iota coefficient
- **j** = jota coefficient
- **k** = kappa coefficient
- **l** = lambda coefficient
- **m** = mu coefficient
- **n** = nu coefficient
- **o** = omicron coefficient
- **p** = pi coefficient
- **q** = rho coefficient
- **r** = eta coefficient
- **s** = sigma coefficient
- **t** = theta coefficient
- **u** = upsilon coefficient
- **v** = phi coefficient
- **w** = phi coefficient
- **x** = chi coefficient
- **y** = lambda coefficient
- **z** = zeta coefficient
- **A** = alpha coefficient
- **B** = beta coefficient
- **C** = gamma coefficient
- **D** = delta coefficient
- **E** = epsilon coefficient
- **F** = zeta coefficient
- **G** = eta coefficient
- **H** = theta coefficient
- **I** = iota coefficient
- **J** = jota coefficient
- **K** = kappa coefficient
- **L** = lambda coefficient
- **M** = mu coefficient
- **N** = nu coefficient
- **O** = omicron coefficient
- **P** = pi coefficient
- **Q** = rho coefficient
- **R** = eta coefficient
- **S** = sigma coefficient
- **T** = theta coefficient
- **U** = upsilon coefficient
- **V** = phi coefficient
- **W** = phi coefficient
- **X** = chi coefficient
- **Y** = lambda coefficient
- **Z** = zeta coefficient

References

The research described in this poster was sponsored by Philip Morris International