Comparative assessment of lung inflammation, pulmonary function and emphysema caused by the aerosol from potential Reduced Risk Products and cigarette smoke in mouse models of COPD.

11 July, 2016 – COPD-2016 - Brisbane

Patrick Vanscheeuwijck1, Blaine Phillips2, Ee Tsin Wong2, Julia Hoeng1, Manuel C. Peitsch1

1Philip Morris International R&D, Philip Morris Products S.A., Switzerland.
2Philip Morris International R&D, Philip Morris International Research Laboratories Pte Ltd, Singapore

Philip Morris International is the sole source of funding and sponsor of this project.
PMI’s Goal for Harm Reduction

Offering adult smokers satisfying products that reduce risk

- Smoking is addictive and causes a number of serious diseases

- Worldwide it is estimated that more than one billion people will continue to smoke in the foreseeable future*

- Successful harm reduction requires that current adult smokers be offered a range of Reduced Risk Products (RRPs) so that consumer acceptance can be best fulfilled

Figure adapted from Clive Bates presentation to E-Cigarette Summit (19 Nov 2013)
Reduced-Risk Products ("RRPs") is the term the company uses to refer to products with the potential to reduce individual risk and population harm in comparison to smoking cigarettes. PMI’s RRPs are in various stages of development and commercialization, and we are conducting extensive and rigorous scientific studies to determine whether we can support claims for such products of reduced exposure to harmful and potentially harmful constituents in smoke, and ultimately claims of reduced disease risk, when compared to smoking cigarettes.

Before making any such claims, we will rigorously evaluate the full set of data from the relevant scientific studies to determine whether they substantiate reduced exposure or risk. Any such claims may also be subject to government review and authorization as is the case in the US today.
Aim and scope of the presentation

• Assessment of the effects of cigarette smoke and a RRP (THS2.2), using PMI’s Heat-not-Burn technology, in 2 animal models of COPD:
 — ApoE\(^{-/-}\) mouse (C57Bl6 background), typically used as model for cardiovascular disease
 — A/J mouse, used as model for lung cancer
• Both animal models are responsive to cigarette mainstream smoke and develop different pathologies, among which aspects of COPD such as lung inflammation, changed pulmonary function, emphysema
• Other endpoints, such as general (chronic) toxicity, atherosclerosis, lung tumor development determined in these studies will not be reported here

Common disease mechanisms in different mouse models, relevance to human situation

- Possible interrelationships and roles for the identified common mechanisms (HYPs) in five mouse models of emphysema in a framework of classical human COPD mechanisms.
 - **transcription factors** *(black font)*
 - **inflammatory mediators** *(orange font)*

Methods - Cigarette smoke and aerosol from a RRP

Assessment of smoke/aerosol – Health Canada Intense smoke protocol

Conventional cigarettes: Smoke from University of Kentucky Standard Reference Cigarette 3R4F

Potentially Reduced-Risk product: Aerosol generated by Tobacco Heating System, commercialized as iQOS (also designated as THS 2.2)
ApoE-/- mouse switching study

Study design

- Comparative assessment of effects of THS2.2 and 3R4F
- Switching design upon initiation of disease:
 - to assess reversibility (switch to fresh air, i.e. cessation) and
 - To quantify how similar switching to THS2.2 is to cessation

Dissection time points: Month 1, 2, 3, 6 and 8
ApoE-/- mouse switching study

Methods - Exposure regime

- Animals were exposed 3 hours per day (3 x 1 hour interrupted exposure periods), 5 days per week
- Nicotine was measured during every exposure period (3 samples per chamber per day)
- Aerosol delivery (nicotine) was within +/- 10% of the targeted 29.9 µg/l nicotine concentration

Nicotine concentration in exposure chamber (study average)

- Fresh air
- THS2.2 or 3R4F

*29.9 µg/l nic corresponds to 6.5 mg/kg, daily dose- or the nicotine amount from approx. 32 cig/day for a 60 kg human, based on body surface comparison, Guidance document Heq dose, FDA
ApoE⁻/⁻ mouse switching study
Aerosol uptake (biomarkers of exposure)

Plasma Nicotine (month 8)

Means ± SEM

Urinary Metabolites (months 3, 6, 8)

HPMA (Acrolein metabolite)

CEMA (Acrylonitrile metabolite)

NNAL (NNK metabolite)

SPMA (Benzene metabolite)

Means ± SEM

Groups
- 3R4F
- Cessation
- Switching
- THS2.2
- Sham / Air
ApoE\(^{-/-}\) mouse switching study
Result summary: Disease mechanisms - Lung inflammation

Free lung cells in Broncho-alveolar lavage fluid (BALF)

Total cells absolute

Differential counts

- Alveolar macrophages absolute
- Alveolar dendritic cells absolute
- Neutrophils absolute
- Lymphocytes absolute

Study month

Groups
- 3R4F
- Cessation
- Switching
- THS2.2
- Sham / Air

PMI SCIENCE
PHILIP MORRIS INTERNATIONAL
ApoE⁻/⁻ mouse switching study

Result summary: Histopathology of the lung - Pulmonary inflammation

Results, Lung Inflammation
Unpigmented macrophages in the alveolar lumen

- Decrease in mean scores after switching to fresh air or THS2.2 (statistically significant from month 6)
- No statistically significant difference between Cessation group and THS2.2-Switch group at month 3

*: Statistically significant compared to sham
*: Statistically significant compared to 3R4F:CONT at month 2
ApoE-/- mouse switching study

Result summary: Disease mechanisms - Lung inflammation

Multiple analyte profiling in Broncho-alveolar Lavage Fluid

MMP activity

Groups
- 3R4F
- Cessation
- Switching
- THS2.2
- Sham / Air

MMP activity

Month
ApoE⁻/⁻ mouse switching study
Result summary: Disease endpoints- Lung function and lung volume

Lung function: Pressure Volume Loops (PVsP) (FlexiVent (Scireq))

Groups
- 3R4F
- Cessation
- Switching
- THS2.2
- Sham / Air

Means ± SEM
Switching Study in an Animal Model of Disease

Result summary: Tissue changes - Histopathology

Histopathological Assessment emphysema

* : Statistically significant compared to sham
* : Statistically significant compared to 3R4F:CONT at month 2

Groups
- 3R4F
- Cessation
- Switching
- THS2.2
- Sham / Air

![Histopathological images](image-url)
ApoE−/− mouse switching study
Result Summary: Lung tissue changes - Morphometry

Bronchiolar attachments
- Fewer Bronchiolar attachments in 3R4F-exposed group

Mean chord length (MCL)
- Mean linear intercept length
- Increased MCL in 3R4F-exposed group

Destructive index (DI)
- Index of parenchymal destruction
- Increased DI in 3R4F-exposed group
ApoE^-/- mouse switching study
Result Summary: Systems response profile: differential gene expression - Lung

3R4F

Cessation

Switch

THS2.2

Result Summary: Systems response profile: differential gene expression - Lung

-log₁₀(p value)

log₂ (fold change)

q = 0.05

Down regulated

Up regulated
ApoE^{-/-} mouse switching study

Result Summary: Disease mechanisms - Network perturbations - Lung

<table>
<thead>
<tr>
<th>Time (Months)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>3R4F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cessation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THS2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Cell proliferation**
- **Tissue repair**
- **Inflammation**
- **Senescence**
- **DNA damage**
- **Apoptosis**
- **Cell stress**

PMI Science - Philip Morris International
Switching Study in an Animal Model of Disease
Summary and Conclusions

- The ApoE−/− mouse model is suitable for studying smoke-related aspects of COPD
- Continuous exposure to smoke from 3R4F causes lung inflammation, lung function and emphysematous changes as of one month of treatment
- Continuous exposure to aerosol from THS2.2 for up to 8 months does not increase inflammation and emphysema in comparison to Sham group
- Switching from cigarette smoke exposure after 2 months to fresh air (Sham) exposure reverses the onset of disease as measured in apical, functional, and molecular endpoints
- Switching from cigarette smoke exposure to THS2.2 aerosol exposure reverses the onset of disease in a similar manner as cessation

A/J mouse study
Study design (OECD TG 453 - Chronic toxicity)

Nicotine in test atmosphere

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Nicotine in µg/L</th>
<th>Interim dissections</th>
<th>18 months Terminal dissection</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3R4F</td>
<td>13.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THS2.2 LOW</td>
<td>6.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THS2.2 MEDIUM</td>
<td>13.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THS2.2 HIGH</td>
<td>26.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Female A/J

Male A/J

Biomarkers of exposure, blood FACS, urinalysis

Omics

Histopathology

BALF analysis

Lung function

Biomarkers of exposure, hematology, blood FACS, clinical chemistry, urinalysis

Omics

Histopathology
A/J mouse study
Methods - Exposure and aerosol uptake

- Animals were exposed 6 hours per day, 5 days per week
- Nicotine was measured 3 samples per chamber per day
- Aerosol delivery (nicotine) was within +/- 10% of the targeted nicotine concentration
- Aerosol uptake was in line with test atmosphere nicotine concentration

Nicotine concentration in exposure chamber (study average)

Nicotine metabolites in urine

*26.8 µg/l nic (high dose) corresponds to 11.6 mg/kg, daily dose- or the nicotine amount from approx. 56 cig/day for a 60 kg human, based on body surface comparison, Guidance document Heq dose, FDA
A/J mouse study

Result summary: Inflammation - Free lung cell analysis in BALF

- 3R4F exposure-related increases in neutrophil, alveolar macrophage, dendritic cell, and lymphocyte count
- No obvious increase in the immune cell counts in lungs (BALF) of THS2.2 aerosol-exposed mice
A/J mouse study
Result summary: Lung inflammation - BALF cytokines/chemokines

- Minimal up-regulation of key inflammatory factors in THS2.2 aerosol-exposed mice
 - 3R4F exposure-related increases in
 - Levels of inflammatory cytokines, e.g. IL-6, TNF-α, IL1-β
 - Levels of chemotactic factors, e.g. MCP1, KC
 - Growth factors, e.g. EGF, VEGF
A/J mouse study
Result summary: Lung function

No obvious changes in lung function in THS2.2 aerosol-exposed mice

3R4F exposure-related changes
- Leftward & upward shift of the P-V loops for both the inflation and deflation phases
- Increased lung volumes at specified pressure; greater ease with which the lungs may be extended at a specified pressure
- Lower pressure at specified volume of air in the lung
A/J mouse study
Result summary: Lung tissue changes - Histopathology and morphometry

- Histopathological assessment and morphometric analysis shows consistent emphysema in 3R4F-exposed A/J mice but in THS2.2-exposed animals.

Histopathology - emphysema

Morphometry – Mean Chord Length

Month 5

<table>
<thead>
<tr>
<th></th>
<th>Mean Chord Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham</td>
<td>40 ± 2</td>
</tr>
<tr>
<td>3R4F</td>
<td>60 ± 3***</td>
</tr>
<tr>
<td>THS2.2 Low</td>
<td>40 ± 3</td>
</tr>
<tr>
<td>THS2.2 Med</td>
<td>40 ± 2</td>
</tr>
<tr>
<td>THS2.2 High</td>
<td>40 ± 2</td>
</tr>
</tbody>
</table>

Morphometry – Destructive index

Month 5

<table>
<thead>
<tr>
<th></th>
<th>Destructive Index (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham</td>
<td>10 ± 1</td>
</tr>
<tr>
<td>3R4F</td>
<td>30 ± 1***</td>
</tr>
<tr>
<td>THS2.2 Low</td>
<td>10 ± 1</td>
</tr>
<tr>
<td>THS2.2 Med</td>
<td>10 ± 1</td>
</tr>
<tr>
<td>THS2.2 High</td>
<td>10 ± 1</td>
</tr>
</tbody>
</table>

Morphometry – Bronchiolar attachments

Month 5

<table>
<thead>
<tr>
<th></th>
<th>Bronchiolar Attachments (n/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham</td>
<td>5 ± 1</td>
</tr>
<tr>
<td>3R4F</td>
<td>10 ± 1*</td>
</tr>
<tr>
<td>THS2.2 Low</td>
<td>5 ± 1</td>
</tr>
<tr>
<td>THS2.2 Med</td>
<td>5 ± 1</td>
</tr>
<tr>
<td>THS2.2 High</td>
<td>5 ± 1</td>
</tr>
</tbody>
</table>

* p<0.05; **p<0.01; ***p<0.001 differences relative to sham
A/J mouse study
Result summary: Lung tissue changes -Morphometry

- Supplemental analysis of lung volume-independent state-of-the-art morphometric parameters confirm the emphysematous changes in 3R4F-exposed but in the THS2.2-exposed mice

* * *p<0.05; **p<0.01; ***p<0.001 differences relative to sham
A/J mouse study
Summary and Conclusions

- The A/J mouse model is suitable for studying smoke-related aspects of COPD
- After 1 month of exposure to cigarette smoke, lung inflammation is clearly present and changes in lung function are obvious – lung emphysema is present at the 5 months time point
- Exposure to aerosol for THS2.2 doesn’t cause any changes in lung inflammation, lung function and emphysema

Comparison mouse models

• Both independent mouse studies have shown that:
 – Lung inflammation and changes in pulmonary function are induced after 1 month of exposure to cigarette smoke
 – Lung emphysema is caused by cigarette smoke and significant after 2 months (or 5 months A/J mice) of exposure to cigarette smoke
 – Aerosol from THS2.2, a RRP, causes only minimal changes in lung inflammation, but no changes in lung function and pulmonary emphysema.
THANK YOU

www.pmiscience.com