Indoor Air Chemistry
Comparative study between conventional cigarette and heat-not-burn technology


Introduction & Scope
Operation of PMI’s heat-not-burn product THS2.2 results in significantly reduced formation of harmful and potentially harmful constituents, compared to conventional cigarettes, and no sidestream aerosol. The objective of the study was to assess the impact of using THS2.2 on Indoor Air Chemistry (IAC) based on 18 markers of Indoor Air Quality (IAQ).

Study Design
- Dedicated IAQ room and four Model Environmental conditions tested (EN 15251:2007).
- Eighteen IAQ markers: Environmental Tobacco Smoke (ETS) markers, carbonyls, Volatile Organic Compounds (VOCs), gases. All methods were ISO 17025 accredited.
- Products: Marlboro Gold (MLG) Swiss market, THS2.2, Background (BKG).
- Four hours collection, four trapping systems, on-line measurement for gases.

Results - CO on-line measurements
The online signal for ETS of MLG has several maxima, reflecting the smoking pattern of the panelists. The online signals for BKG and THS2.2: median levels below LOD.

Results - RSP, nicotine, carbonyl, VOC
No difference between BKG & THS2.2 for 15 of the 18 analytes investigated, irrespective of the environmental conditions applied.
For the 3 remaining analytes, the increase in levels was only slight for THS2.2 compared to the BKG and 1 or 2 orders of magnitude lower than those measured for MLG.

Impact on IAQ

Next steps
- Conduct IAC for Nicotine-containing vaping products.
- Develop, validate methods for Total Volatile Organic Compounds (TVOC), TSNAs, Aerosol Formers, Phenols for additional assessment of IAQ.