Pulmonary Neoplasia in Strain A Mice following Long-Term Tobacco Smoke Inhalation

Rosemarie B. Lichtner

Philip Morris International, Neuchâtel, Switzerland

American College of Toxicology, 29th Annual Meeting, Tucson, Arizona, USA, 9-12 November 2008
The A/J Mouse as a Lung Tumor Model

• Philip Morris International is committed to the development of Reduced-Risk Tobacco Products. This requires a state-of-the-art scientific approach to assess the disease risk of new products

• Animal models with enhanced lung tumor formation after exposure to cigarette smoke are required to substantiate a reduced risk

• The A/J mouse has been shown to respond to cigarette smoke exposure with enhanced lung tumor formation after a recovery period of several months (Witschi et al., 1997; D’Agostini et al., 2001; Stinn et al., 2005; Curtin et al., 2004)
Nodules in the A/J Mouse Lung

- Lung nodules
- Bronchioloalveolar adenoma
- Bronchioloalveolar adenocarcinoma
- Hyperplasia
Objectives of A/J Mouse Lung Cancer Study

Characterize the effects of chronic MS exposure on lung tumor response with respect to relevance for human tumors:
• Time course (5, 10, and 18 months exposure)
• Increasing MS concentrations (0, 150, and 300 mg total particulate matter [TPM]/m³)
• Different post-exposure periods (up to 13 months)

Endpoints:
• Classical histopathology of step-serial sections to differentiate and quantify proliferative lesions and bronchiolo-alveolar adenomas and adenocarcinomas
• Gene expression analysis of tumor nodules and normal lung tissue
• K-ras mutation analysis in cells from lung nodules
• Analysis of bronchoalveolar lavage fluid (BALF) (see poster #33)
Exposure Regimens of A/J Mouse Study

Exposure: 6 hours/day, 5 days/week
Exposure mode: whole-body
MS concentrations: 150 and 300 mg TPM/m³ (MS-150 and MS-300)

<table>
<thead>
<tr>
<th>5-month inhalation</th>
<th>mice per time point</th>
<th>MS exposure</th>
<th>post-exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>months</td>
<td>1 2 3 4 5</td>
<td>6 7 8 9 10 11</td>
</tr>
<tr>
<td></td>
<td>20 - 39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-month inhalation</td>
<td>months</td>
<td>1 2 3 4 5</td>
<td>6 7 8 9 10 11</td>
</tr>
<tr>
<td></td>
<td>18 - 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-month inhalation</td>
<td>months</td>
<td>1 2 3 4 5</td>
<td>6 7 8 9 10 11</td>
</tr>
<tr>
<td>(lifetime)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22 - 36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **MS dose:** 97 and 187 g x h/m³
- **MS dose:** 196 and 377 g x h/m³
- **MS dose:** 365 and 692 g x h/m³

Histopathological Evaluation of Lung Tumor Multiplicity: 5 mo Exposure + 13 mo Post-Exposure

Sham

MS-150

MS-300

Lung Tumor Multiplicity (Tumors/mouse)

Time (Months)

(mean ± SE)

Exposure Post-Exposure

Exposure Post-Exposure

Bronchioloalveolar Carcinoma

Bronchioloalveolar Adenoma

Nodular Hyperplasia

Sum Microscopy

Macroscopy
Histopathological Evaluation of Lung Tumor Multiplicity: 10 mo Exposure + 8 mo Post-Exposure

Sham

MS-150

MS-300

(mean ± SE)
Histopathological Evaluation of Lung Tumor Multiplicity: 18 mo Exposure

Exposure

(mean ± SE)

- Bronchioloalveolar Carcinoma
- Bronchioloalveolar Adenoma
- Nodular Hyperplasia
- Sum Microscopy
- Macroscopy
Lung Tumor Multiplicity: 18-Month Dissection

| 5 Months Exposure + 13 Months Post-Exposure | 10 Months Exposure + 8 Months Post-Exposure | 18 Months Exposure |

- **Sham**
 - Lung Tumor Multiplicity (Tumors/mouse): 1.0

- **MS-150**
 - Lung Tumor Multiplicity (Tumors/mouse): 2.7

- **MS-300**
 - Lung Tumor Multiplicity (Tumors/mouse): 2.6

Bronchioloalveolar Carcinoma
- **Sham**: 1.0
- **MS-150**: 1.0
- **MS-300**: 1.0

Bronchioloalveolar Adenoma
- **Sham**: 1.0
- **MS-150**: 1.0
- **MS-300**: 1.0

Nodular Hyperplasia
- **Sham**: 1.0
- **MS-150**: 1.0
- **MS-300**: 1.0

* * p ≤ 0.05 compared to sham
* X p ≤ 0.05 compared to low MS

(mean ± SE)
mRNA Expression Analysis of Normal Lung Tissue and Nodules

PROCEDURE

• Laser capture microdissection (LCM) of lung nodules and normal lung tissue
• mRNA analysis using Agilent technology

RESULTS

• Normal lung tissue: differential gene expression pattern was induced by MS exposure
Kinetics for Genes Coding for Antioxidant and Phase I/II Xenobiotic-Metabolizing Enzymes: Normal Lung Tissue

<table>
<thead>
<tr>
<th>gene symbol</th>
<th>0.5 month</th>
<th>2 months</th>
<th>5 months</th>
<th>2 days</th>
<th>5 months</th>
<th>13 months</th>
<th>18 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftl2</td>
<td>1.5</td>
<td>2.1</td>
<td>2.0</td>
<td>1.3</td>
<td>1.4</td>
<td>—</td>
<td>1.9</td>
</tr>
<tr>
<td>gclc</td>
<td>6.4</td>
<td>6.7</td>
<td>5.7</td>
<td>1.1</td>
<td>—</td>
<td>—</td>
<td>4.0</td>
</tr>
<tr>
<td>gclm</td>
<td>3.4</td>
<td>3.7</td>
<td>4.1</td>
<td>-1.2</td>
<td>—</td>
<td>-1.4</td>
<td>2.8</td>
</tr>
<tr>
<td>gpx2</td>
<td>2.8</td>
<td>3.1</td>
<td>2.5</td>
<td>-1.4</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>gsr</td>
<td>2.5</td>
<td>2.5</td>
<td>2.1</td>
<td>-1.0</td>
<td>-1.3</td>
<td>—</td>
<td>2.0</td>
</tr>
<tr>
<td>hmox1</td>
<td>2.7</td>
<td>4.5</td>
<td>4.4</td>
<td>1.6</td>
<td>—</td>
<td>1.5</td>
<td>4.8</td>
</tr>
<tr>
<td>maff</td>
<td>2.6</td>
<td>2</td>
<td>2.7</td>
<td>-1.2</td>
<td>—</td>
<td>—</td>
<td>2.0</td>
</tr>
<tr>
<td>nqo1</td>
<td>6.4</td>
<td>6.5</td>
<td>6.0</td>
<td>-1.2</td>
<td>—</td>
<td>—</td>
<td>9.4</td>
</tr>
<tr>
<td>txnrd1</td>
<td>4.1</td>
<td>3.6</td>
<td>3.6</td>
<td>1.1</td>
<td>—</td>
<td>—</td>
<td>2.4</td>
</tr>
<tr>
<td>adh7</td>
<td>6.4</td>
<td>10.6</td>
<td>10.0</td>
<td>-1.1</td>
<td>—</td>
<td>—</td>
<td>3.2</td>
</tr>
<tr>
<td>aldh3A1</td>
<td>5.6</td>
<td>7.2</td>
<td>7.3</td>
<td>-2.2</td>
<td>—</td>
<td>—</td>
<td>11.0</td>
</tr>
<tr>
<td>akr1B8</td>
<td>4.2</td>
<td>4.3</td>
<td>4.4</td>
<td>1.6</td>
<td>—</td>
<td>—</td>
<td>3.1</td>
</tr>
<tr>
<td>cyp1A1</td>
<td>64.7</td>
<td>67</td>
<td>67.4</td>
<td>-5.1</td>
<td>—</td>
<td>—</td>
<td>100.0</td>
</tr>
<tr>
<td>cyp1B1</td>
<td>10</td>
<td>10.6</td>
<td>8.3</td>
<td>1.5</td>
<td>—</td>
<td>—</td>
<td>44.0</td>
</tr>
<tr>
<td>gsta1</td>
<td>5</td>
<td>6.3</td>
<td>5.3</td>
<td>-1.7</td>
<td>—</td>
<td>—</td>
<td>2.1</td>
</tr>
<tr>
<td>gsta2</td>
<td>5.7</td>
<td>7.2</td>
<td>6.5</td>
<td>-1.7</td>
<td>—</td>
<td>—</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Increase of 2-fold or more
Kinetics for Genes Coding for Inflammatory Responses: Normal Lung Tissue

<table>
<thead>
<tr>
<th>gene symbol</th>
<th>alias</th>
<th>0.5 month</th>
<th>2 months</th>
<th>5 months</th>
<th>5 months</th>
<th>18 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccl2</td>
<td>mcp-1</td>
<td>2.5</td>
<td>3.2</td>
<td>3.5</td>
<td>4.2</td>
<td>5.2</td>
</tr>
<tr>
<td>ccl3</td>
<td>mip-1α</td>
<td>6.7</td>
<td>7.3</td>
<td>7.8</td>
<td>8.3</td>
<td>8.9</td>
</tr>
<tr>
<td>ccl6</td>
<td>mrp-1</td>
<td>3.8</td>
<td>6.9</td>
<td>6.1</td>
<td>5.7</td>
<td>3.2</td>
</tr>
<tr>
<td>ccl20</td>
<td>mip-3α</td>
<td>7.6</td>
<td>5.1</td>
<td>3.6</td>
<td>2.7</td>
<td>3.4</td>
</tr>
<tr>
<td>ccl5</td>
<td>rantes</td>
<td>-1.9</td>
<td>-2.0</td>
<td>-2.7</td>
<td>-1.6</td>
<td>—</td>
</tr>
<tr>
<td>cxcl1</td>
<td>groα, kc</td>
<td>7.8</td>
<td>9.1</td>
<td>5.6</td>
<td>6.2</td>
<td>3.8</td>
</tr>
<tr>
<td>cxcl5</td>
<td>ena-78</td>
<td>64</td>
<td>59.5</td>
<td>30.1</td>
<td>7.2</td>
<td>2.1</td>
</tr>
<tr>
<td>cxcl9</td>
<td>mig</td>
<td>2.1</td>
<td>3.8</td>
<td>4.4</td>
<td>4.9</td>
<td>—</td>
</tr>
<tr>
<td>cxcl10</td>
<td>IP-10</td>
<td>2.3</td>
<td>1.9</td>
<td>3.0</td>
<td>5.3</td>
<td>—</td>
</tr>
<tr>
<td>saa3</td>
<td></td>
<td>16.4</td>
<td>17.2</td>
<td>13.6</td>
<td>15.9</td>
<td>10.5</td>
</tr>
<tr>
<td>orm2</td>
<td></td>
<td>3.2</td>
<td>2.8</td>
<td>2.8</td>
<td>2.4</td>
<td>4.4</td>
</tr>
<tr>
<td>cd68</td>
<td></td>
<td>2.8</td>
<td>4.7</td>
<td>5.1</td>
<td>4.0</td>
<td>3.3</td>
</tr>
<tr>
<td>msr</td>
<td></td>
<td>3.6</td>
<td>10.3</td>
<td>8.4</td>
<td>5.6</td>
<td>3.4</td>
</tr>
<tr>
<td>mmp12</td>
<td></td>
<td>7.1</td>
<td>10.2</td>
<td>10.5</td>
<td>8.8</td>
<td>20.4</td>
</tr>
<tr>
<td>timp1</td>
<td></td>
<td>3.4</td>
<td>2.9</td>
<td>2.5</td>
<td>2.0</td>
<td>1.8</td>
</tr>
<tr>
<td>slpi</td>
<td></td>
<td>1.2</td>
<td>3.1</td>
<td>2.6</td>
<td>2.0</td>
<td>2.6</td>
</tr>
<tr>
<td>ctsk</td>
<td></td>
<td>5.3</td>
<td>8.9</td>
<td>8.8</td>
<td>5.2</td>
<td>4.3</td>
</tr>
<tr>
<td>ctsss</td>
<td></td>
<td>2</td>
<td>5.4</td>
<td>5.9</td>
<td>5.3</td>
<td>2.3</td>
</tr>
</tbody>
</table>

≥ 2-fold increase
- chemokines
- acute-phase response
- macrophage marker
- matrix metallopeptidase
- tissue inhibitor of metalloproteinase 1
- secretory leukocyte protease inhibitor
- cathepsin K
- cathepsin S

≥ 2-fold decrease
mRNA Expression Analysis of Normal Lung Tissue and Nodules

PROCEDURE

• Laser capture microdissection (LCM) of lung nodules and normal lung tissue
• mRNA analysis using Agilent technology

RESULTS

• Normal lung tissue: differential gene expression pattern was induced by MS exposure

• Lung nodules: no differential gene expression pattern was induced by MS exposure (31 nodules, 14 normal lung tissues)

Possible explanations

Technical reasons: mainly ruled out

Biological reasons: High heterogeneity of nodules: e.g., independent transformation events, different tumor progression stages, and mixture of adenoma and carcinoma.
K-ras Mutation analysis of Lung Nodules from MS-exposed A/J Mice

PROCEDURE

- LCM of lung nodules from snap-frozen tissue and formalin-fixed, paraffin-embedded tissue

- Isolation of DNA, amplification with subsequent sequencing of the Exon 1 and Exon 2 fragments of the *K-ras* gene, mutation analysis of the hotspots: codons 12, 13, and 61

RESULTS

- No MS-specific pattern was observed
K-ras Mutations in LCM-derived Lung Nodules: No MS-specific Pattern

Totals for snap-frozen tissue and formalin-fixed, paraffin-embedded tissue combined.

<table>
<thead>
<tr>
<th>Group</th>
<th># of Tumors and K-ras Mutations</th>
<th>Incidence of K-ras mutations</th>
<th># of K-ras Mutations in Hotspot Codons</th>
<th># of Transversions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tumors</td>
<td>Mutations</td>
<td>%</td>
<td>12</td>
</tr>
<tr>
<td>18 mo control</td>
<td>11</td>
<td>8</td>
<td>73</td>
<td>4</td>
</tr>
<tr>
<td>18 mo MS</td>
<td>14</td>
<td>12</td>
<td>86</td>
<td>6</td>
</tr>
</tbody>
</table>

Totals for snap-frozen tissue and formalin-fixed, paraffin-embedded tissue combined.
Summary

A/J mice exposed to cigarette smoke: major findings

• Significant, concentration-dependent enhancement of lung tumors, i.e., adenomas and adenocarcinomas

• No obvious shift in tumor spectrum (from adenoma to adenocarcinoma)

• Differential gene expression in normal lung tissue
 – 3 main classes: genes related to oxidative stress, xenobiotic metabolism, or inflammatory processes

• No differential gene expression in isolated lung nodules

• No MS-specific mutation pattern in exons 1 and 2 of the K-ras gene
Conclusion

• Chronic exposure (18 mo) of A/J mice to cigarette smoke results in increased lung tumor formation

• Dose-dependency and good reproducibility of cigarette-smoke-dependent increased lung tumor formation in A/J mice

• The relevance of the A/J mouse model for cigarette-smoke-induced lung tumors in humans requires further validation
Acknowledgement

Co-authors

• Ansgar Büttner (Philip Morris Research Laboratories, Cologne, Germany)
• Stephan Gebel (Philip Morris Research Laboratories, Cologne, Germany)
• Hans-Jürgen Haussmann (toxicology consultant, Roesrath, Germany)
• Walter Stinn (Philip Morris Research Laboratories, Cologne, Germany)
• Frans van Overveld* (Philip Morris Research Laboratories, Leuven, Belgium)

*Current address: Kessel-Lo, Belgium

Special thanks also to all colleagues at Philip Morris Research Laboratories (Leuven, Belgium and Cologne, Germany) for providing excellent support

This work was supported in part by Philip Morris USA